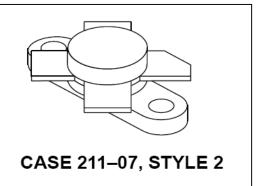
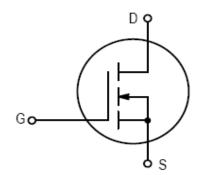


M/A-COM Products Released - Rev. 01302012


Designed for wideband large signal output and drive stages up to 400 MHz range.


N-Channel enhancement mode

Guaranteed 28 V, 150 MHz performance
 Output power = 30 W
 Minimum gain = 13 dB
 Efficiency — 60% (Typical)

- Small- and large-signal characterization
- Typical performance at 400 MHz, 28 Vdc, 30 W output = 7.7 dB gain
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low noise figure 1.5 dB (typ.) at 1.0 A, 150 MHz
- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques

Product Image

Maximum Ratings

Rating	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	65	Vdc	
Drain–Gate Voltage (R _{GS} = 1.0 M Ω)	VDGR	65	Vdc	
Gate-Source Voltage	V _{GS}	±40	Vdc	
Drain Current — Continuous	ΙD	5.0	Adc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	100 0.571	Watts W/°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	
Operating Junction Temperature	TJ	200	°C	

THERMAL CHARACTERISTICS

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not qua

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.75	°C/W

Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

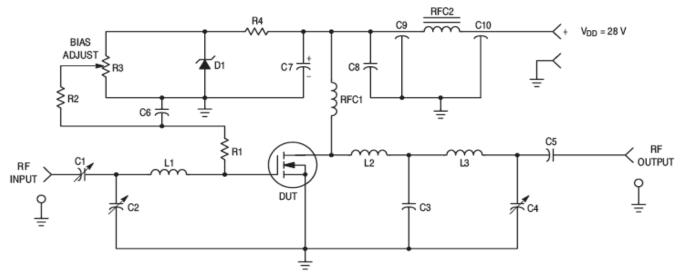
M/A-COM Technol gy Solutions had and its diffiliates reserve the right to make Changes for the procled is) of information contained herein without notice.

MRF137

The RF MOSFET Line 30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 01302012

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	Symbol	141111	1310	Mux	Oilit
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 10 mA)	V	65	_		Vdc
	V _{(BR)DSS}	0.5		4.0	
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0)	IDSS	_		4.0	mAdc
Gate-Source Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	I _{GSS}	_	_	1.0	μAdc
ON CHARACTERISTICS					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 25 mA)	V _{GS(th)}	1.0	3.0	6.0	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 500 mA)	9 _{fs}	500	750	_	mmhos
DYNAMIC CHARACTERISTICS					
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	48	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{oss}	_	54	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	11	_	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (V _{DS} = 28 Vdc, I _D = 1.0 A, f = 150 MHz)	NF	_	1.5	_	dB
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz (Figure 1) I _{DQ} = 25 mA) f = 400 MHz (Figure 14)	G _{ps}	13	16 7.7	_	dB
Drain Efficiency (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 25 mA)	η	50	60	_	%
Electrical Ruggedness (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 25 mA, VSWR 30:1 at All Phase Angles)	Ψ	No Degradation in Output Power			

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 01302012

C1 - Arco 403, 3.0-35 pF, or equivalent

C2 - Arco 406, 15-115 pF, or equivalent

C3 — 56 pF Mini-Unelco, or equivalent

C4 - Arco 404, 8.0-60 pF, or equivalent

C5 - 680 pF, 100 Mils Chip

 $C6 - 0.01 \, \mu\text{F}$, 100 V, Disc Ceramic

C7 - 100 µF, 40 V

C8 - 0.1 µF, 50 V, Disc Ceramic

C9, C10 - 680 pF Feedthru

D1 — 1N5925A Motorola Zener

L1 — 2 Turns, 0.29" ID, #18 AWG Enamel, Closewound

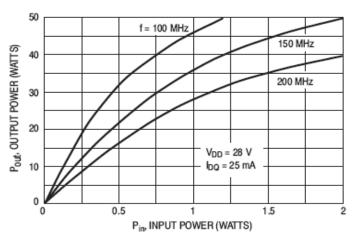
L2 - 1-1/4 Turns, 0.2" ID, #18 AWG Enamel, Closewound

L3 — 2 Turns, 0.2" ID, #18 AWG Enamel, Closewound

RFC1 - 20 Turns, 0.30" ID, #20 AWG Enamel, Closewound

RFC2 — Ferroxcube VK-200 — 19/4B

 $R1 - 10 \text{ k}\Omega$, 1/2 W Thin Film


R2 — 10 kΩ, 1/4 W

R3 — 10 Turns, 10 k Ω

R4 — 1.8 kΩ, 1/2 W

Board - G10, 62 Mils

Figure 1. 150 MHz Test Circuit

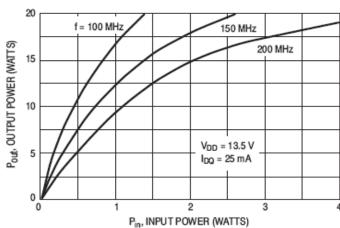
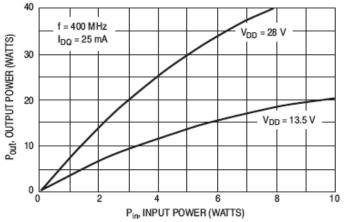


Figure 3. Output Power versus Input Power

typical. Mechanical outline has been fixed. Engineering samples

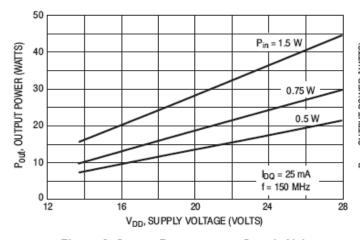
Commitment to produce in volume is not gua

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are


[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Products Released - Rev. 01302012

50 $P_{in} = 1 W$ Pout, OUTPUT POWER (WATTS) 40 30 0.5 W 20 0.25 W 10 $I_{DQ} = 25 \text{ mA}$ f = 100 MHz 0 12 20 28 VDD, SUPPLY VOLTAGE (VOLTS)

Figure 4. Output Power versus Input Power

Figure 5. Output Power versus Supply Voltage

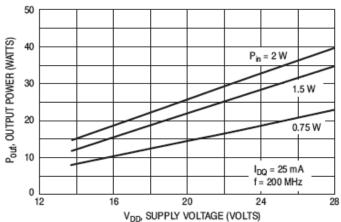


Figure 6. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

• North America Tel: 800.366.2266 / Fax: 978.366.2266

M/A-COM Products Released - Rev. 01302012

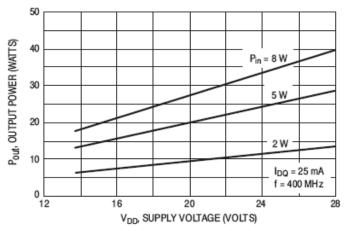


Figure 8. Output Power versus Supply Voltage

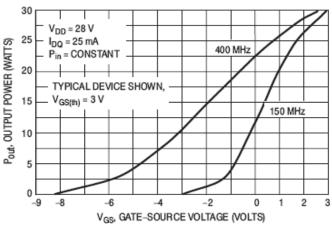


Figure 9. Output Power versus Gate Voltage

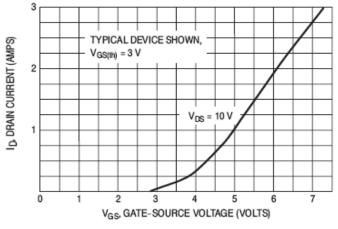


Figure 10. Drain Current versus Gate Voltage (Transfer Characteristics)

Figure 11. Gate Source Voltage versus Case Temperature

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 01302012

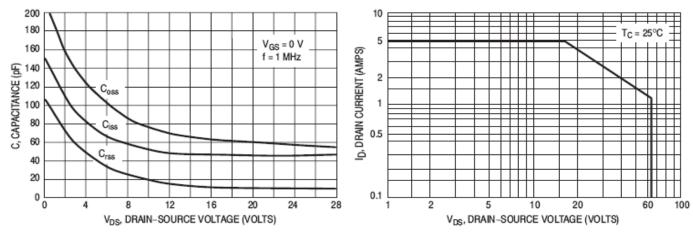
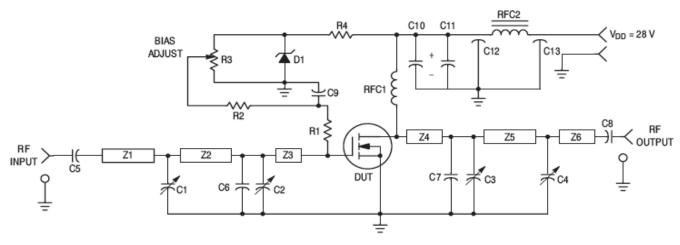



Figure 12. Capacitance versus Drain-Source Voltage

Figure 13. DC Safe Operating Area

C1, C2, C3, C4 - 0-20 pF Johanson, or equivalent

C5, C8 - 270 pF, 100 Mil Chip

C6, C7 - 24 pF Mini-Unelco, or equivalent

C9 - 0.01 μF, 100 V, Disc Ceramic

C10 - 100 µF, 40 V

C11 - 0.1 µF, 50 V, Disc Ceramic

C12, C13 - 680 pF Feedthru

D1 — 1N5925A Motorola Zener R1, R2 — 10 kΩ, 1/4 W

R3 — 10 Turns, 10 kΩ

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not qua

R4 — 1.8 kΩ, 1/2 W

Z1 - 2.9" x 0.166" Microstrip

Z2, Z4 - 0.35" x 0.166" Microstrip

Z3 — 0.40" x 0.166" Microstrip

Z5 - 1.05" x 0.166" Microstrip

Z6 - 1.9" x 0.166" Microstrip

RFC1 - 6 Turns, 0.300" ID, #20 AWG Enamel, Closewound

RFC2 — Ferroxcube VK-200 — 19/4B

Board — Glass Teflon, 62 Mils

Figure 14. 400 MHz Test Circuit

• North America Tel: 800.366.2266 / Fax: 978.366.2266 Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

M/A-COM Products Released - Rev. 01302012

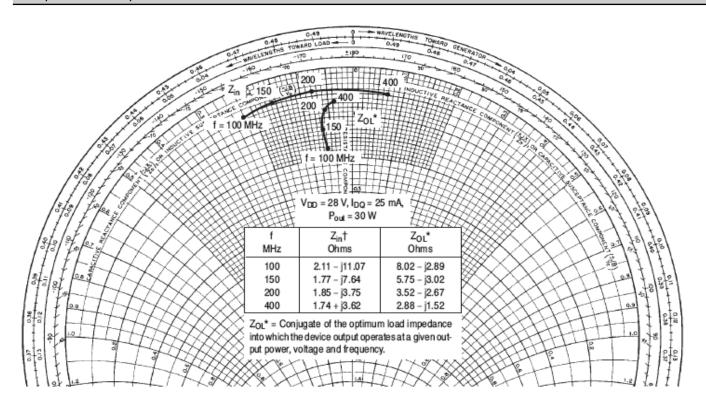


Figure 15. Large-Signal Series Equivalent Input and Output Impedance, Zin, ZOL*

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be available Commitment to produce in volume is not quaranteed.

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

M/A-COM Products Released - Rev. 01302012

f	f S ₁₁		S ₂₁		S ₁₂		S ₂₂	
(MHz)	S ₁₁	∠ φ	S ₂₁	∠ φ	S ₁₂	∠ φ	S ₂₂	∠φ
2.0	0.977	-32	59.48	163	0.011	67	0.661	-36
5.0	0.919	-70	48.67	142	0.024	44	0.692	-78
10	0.852	-109	33.50	122	0.032	29	0.747	-117
20	0.817	-140	19.05	106	0.037	16	0.768	-146
30	0.814	-153	13.11	99	0.038	14	0.774	-157
40	0.811	-159	9.88	95	0.038	13	0.782	-162
50	0.812	-164	7.98	92	0.038	12	0.787	-165
60	0.813	-166	6.66	89	0.038	12	0.787	-168
70	0.815	-168	5.708	86	0.038	11	0.787	-169
80	0.816	-170	5.003	84	0.038	11	0.787	-170
90	0.817	-171	4.560	83	0.038	12	0.787	-171
100	0.817	-172	4.170	81	0.039	13	0.787	-172
110	0.818	-173	3.670	80	0.039	13	0.788	-172
120	0.820	-173	3.420	79	0.039	13	0.788	-173
130	0.821	-173	3.170	79	0.039	13	0.788	-173
140	0.822	-174	2.980	78	0.039	13	0.788	-173
150	0.823	-175	2.826	77	0.039	14	0.788	-173
160	0.824	-175	2.650	76	0.039	14	0.790	-174
170	0.825	-176	2.438	75	0.039	14	0.792	-174
180	0.827	-176	2.325	73	0.039	15	0.793	-174
190	0.829	-177	2.175	72	0.039	16	0.796	-174
200	0.831	-177	2.084	71	0.039	16	0.799	-174
225	0.836	-178	1.824	69	0.039	18	0.805	-174
250	0.846	-178	1.621	66	0.039	21	0.816	-174
275	0.853	-179	1.462	64	0.039	23	0.822	-174
300	0.853	-179	1.319	61	0.040	25	0.833	-174
325	0.856	-179	1.194	59	0.040	27	0.828	-174
350	0.857	+179	1.089	56	0.040	30	0.842	-174
375	0.861	+179	1.014	54	0.042	32	0.849	-174
400	0.865	+178	0.927	51	0.043	35	0.856	-174
425	0.875	+178	0.876	49	0.045	37	0.866	-174
450	0.881	+178	0.810	46	0.046	40	0.870	-174
475	0.886	+177	0.755	44	0.046	43	0.875	-174
500	0.887	+177	0.694	41	0.051	43	0.888	-174
525	0.888	+176	0.677	39	0.052	43	0.890	-174
550	0.896	+176	0.625	36	0.055	45	0.898	-174
575	0.907	+175	0.603	34	0.058	45	0.913	-174
600	0.910	+175	0.585	32	0.061	45	0.918	-174
625	0.910	+174	0.563	30	0.065	45	0.945	-174
650	0.920	+174	0.543	28	0.069	46	0.952	-174
675	0.938	+173	0.533	26	0.074	47	0.974	-174
700	0.943	+171	0.515	24	0.078	47	0.958	-176
725	0.934	+170	0.491	22	0.079	46	0.953	-177
750	0.940	+170	0.475	22	0.084	48	0.943	-177
775	0.953	+169	0.477	21	0.090	48	0.957	-177
800	0.959	+168	0.467	17	0.093	48	0.957	-179

Table 1. Common Source Scattering Parameters $50~\Omega$ System ${\rm V_{DS}=28~V,~I_{D}=0.75~A}$

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be evailable. Commitment to produce in volume is not guaranteed:

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 01302012

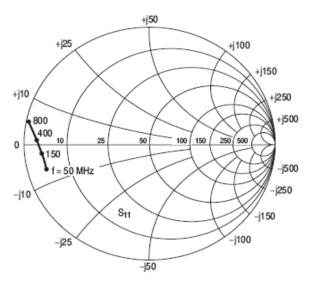


Figure 16. S₁₁, Input Reflection Coefficient versus Frequency V_{DS} = 28 V I_D = 0.75 A

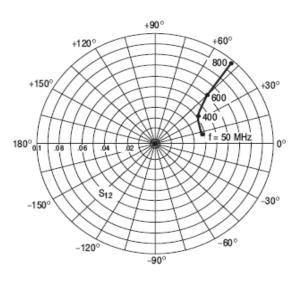


Figure 17. S_{12} , Reverse Transmission Coefficient versus Frequency $V_{DS} = 28 \text{ V}$ $I_D = 0.75 \text{ A}$

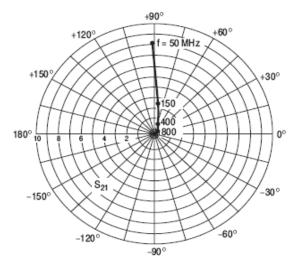


Figure 18. S_{21} , Forward Transmission Coefficient versus Frequency $V_{DS} = 28 \text{ V}$ $I_D = 0.75 \text{ A}$

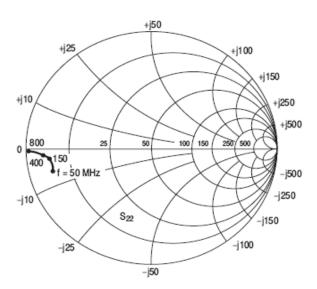


Figure 19. S₂₂, Output Reflection Coefficient versus Frequency $V_{DS} = 28 \text{ V} \quad I_D = 0.75 \text{ A}$

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be evailable.

Commitment to produce in volume is not qua

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MRF137

The RF MOSFET Line 30W, to 400MHz, 28V

M/A-COM Products Released - Rev. 01302012

RF POWER MOSFET CONSIDERATIONS

DESIGN CONSIDERATIONS

The MRF137 is a RF power N-Channel enhancement-mode field-effect transistor (FET) designed especially for VHF power amplifier applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove vertical power FETs.

M/A-COM Application Note AN211A, FETs in Theory and-Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance.

The value of quiescent drain current (IDQ) is not critical formany applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple

resistive divider network. Some special applications may require a more elaborate bias system.

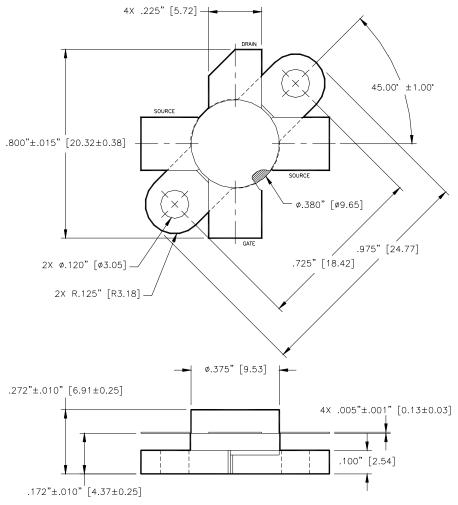
GAIN CONTROL

Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.)

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 sparameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See M/A-COM Application Note AN215A for a discussion of two port network theory and stability.


PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. • North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 01302012

Unless otherwise noted, tolerances are inches $\pm .005$ " [millimeters ± 0.13 mm]

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be exailable. Commitment to produce in volume is not quaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
Visit www.macomtech.com for additional data sheets and product information.