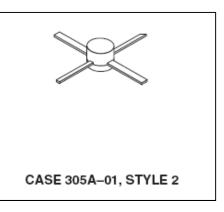
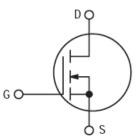


The Broadband RF TMOS[®] Line 2W, 500MHz, 28V


M/A-COM Products Released - Rev. 07.07


Designed for wideband large signal amplifier and oscillator applications to 500MHz

Product Image

N-Channel enhancement mode

- Guaranteed 28 volt, 500 MHz performance Output power = 2.0 watts Minimum gain = 16 dB (Min.) Efficiency = 55% (Typ.)
- Facilitates manual gain control, ALC and modulation techniques
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Excellent thermal stability ideally suited for Class A operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage	V _{DSS}	65	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±20	Vdc
Drain Current — Continuous	ID	0.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	8.0 45	Watts mW/ºC
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C
THERMAL CHARACTERISTICS	- -	•	•

THERMAL CHARACTERISTICS Characteristic Symbol Max Thermal Resistance, Junction to Case R₀JC 13.2

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ailable.

changes to the prod

v be

- 1
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not gua

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 ٠
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Unit

°C/W

FUEDTRICAL OUADAOTERISTICS /T

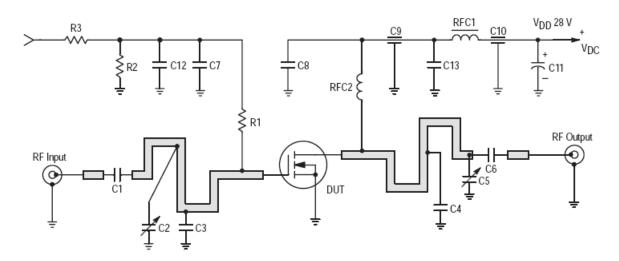
2W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

ELECTRICAL CHARACTERISTICS (T _C = 25°C unless otherwise noted.)										
Characteristic	Symbol	Min	Тур	Max	Unit					
OFF CHARACTERISTICS										
Drain–Source Breakdown Voltage ($V_{GS} = 0$, $I_D = 1.0$ mA)	V(BR)DSS	65	—	—	Vdc					
Zero Gate Voltage Drain Current (V_{DS} = 28 V, V_{GS} = 0)	IDSS	—	—	0.5	mAdc					
Gate–Source Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	I _{GSS}	—	—	1.0	μAdc					
ON CHARACTERISTICS										
Gate Threshold Voltage (I_D = 10 mA, V_{DS} = 10 V)	V _{GS(th)}	2.0	4.0	5.0	Vdc					
Forward Transconductance (V_{DS} = 10 V, I_D = 100 mA)	9fs	80	110	—	mmhos					
DYNAMIC CHARACTERISTICS										
Input Capacitance (V_{DS} = 28 V, V_{GS} = 0, f = 1.0 MHz)	Ciss	_	3.0	_	pF					
Output Capacitance (V_{DS} = 28 V, V_{GS} = 0, f = 1.0 MHz)	C _{oss}	—	4.0	—	pF					
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	Crss	—	0.45	—	pF					
FUNCTIONAL CHARACTERISTICS (Figure 1)										
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 2.0 W, f = 500 MHz, I _{DQ} = 25 mA)	G _{ps}	16	18	_	dB					
Drain Efficiency (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 2.0 W, f = 500 MHz, I _{DQ} = 25 mA)	η	50	55	—	%					
Electrical Ruggedness (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 2.0 W, f = 500 MHz, I _{DQ} = 25 mA, VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power								
Series Equivalent Input Impedance (V _{DD} = 28 V, P _{out} = 2.0 W, f = 500 MHz, I _{DQ} = 25 mA)	Z _{in}	—	5.9 – j19.4	—	Ohms					
Series Equivalent Output Impedance (V _{DD} = 28 V, P _{out} = 2.0 W, f = 500 MHz, I _{DQ} = 25 mA)	Z _{out}	—	14.5 – j29	—	Ohms					

OF O walks a sthe service stated)

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be valiable. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.



The Broadband RF TMOS[®] Line 2W, 500MHz, 28V

M/A-COM Products

Released - Rev. 07.07

C1, C6, C12	270 pF, Chip Capacitors
C2, C5	1–10 pF, Johanson Trimmer Capacitors
C3	30 pF, 100 mil ATC Chip Capacitor
C4	3.9 pF, 100 mil ATC Chip Capacitor
C7, C8	0.1 μF, Blue Capacitors
C9, C10	680 pF, Feed Through Capacitors
C11	50 μF, 50 V Electrolytic Capacitor
C13	240 pF, 100 mil ATC Chip Capacitor

R1	150 Ω, 1/2 Watt
R2	10 kΩ, 1/2 Watt
R3	1 kΩ, 1/2 Watt
RFC1	Ferroxcube VK200–19/4B
RFC2	8 Turns, #20 AWG, Enameled, ID 110 mils

Board Material — 0.062", Teflon[®] Fiberglass, 1 oz., Copper clad both sides, $\varepsilon_r = 2.55$

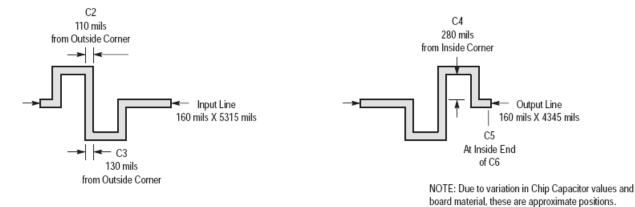


Figure 1. MRF158 500 MHz Test Circuit

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions • North America Tel: 800.366.2266 / Fax: 978.366.2266 is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. • Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Visit www.macomtech.com for additional data sheets and product information. Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed. ailable. be
- 3

M/A-COM Technology Solutions incrand its iffiliates reserve the right to make one no situ the products) ovin ormation contained herein without notice. chi ngus

2W, 500MHz, 28V

The Broadband RF TMOS[®] Line

M/A-COM Products Released - Rev. 07.07

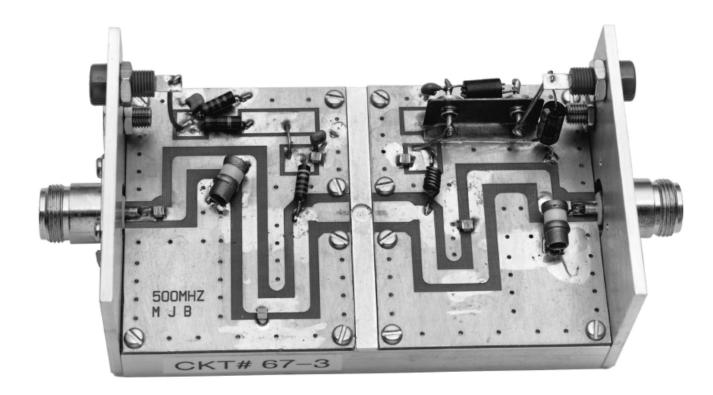
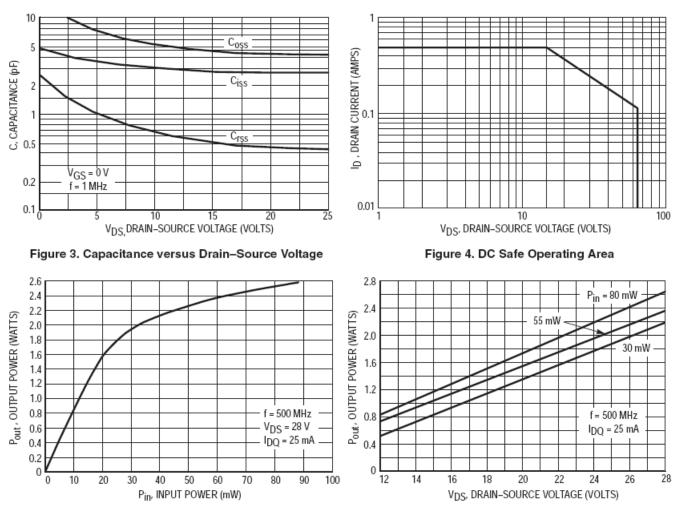


Figure 2. MRF158 Broadband Test Fixture

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test dotte may be vailable. Commitment to produce in volume is not guaranteed.

4


• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

The Broadband RF TMOS[®] Line 2W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

TYPICAL CHARACTERISTICS

Figure 5. Output Power versus Input Power

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples ailable. be Commitment to produce in volume is not gua

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

changes to the proc

- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.
- M/A-COM Technology Solutions incrand its affiliates reserve the right to make changes it the products) of information contained herein without notice.

5

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

2W, 500MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07

f	S ₁₁		S	S ₂₁		s ₁₂		S ₂₂	
MHz	S ₁₁	φ	S ₂₁	¢	S ₁₂	φ	S ₂₂	φ	
5	1.000	-2	9.45	179	0.000	89	0.965	-1	
10	0.997	-4	9.45	177	0.005	92	0.969	-3	
15	0.999	-5	9.50	176	0.007	86	0.962	-5	
20	0.997	-7	9.45	174	0.009	91	0.958	-6	
25	0.997	-9	9.44	173	0.012	88	0.958	-7	
30	0.996	-10	9.40	172	0.014	82	0.960	-8	
35	0.994	-12	9.38	170	0.016	78	0.956	-10	
40	0.993	-14	9.35	169	0.016	77	0.958	-11	
45	0.990	-15	9.34	167	0.020	79	0.957	-12	
50	0.988	-17	9.29	166	0.021	76	0.957	-14	
55	0.985	-19	9.25	165	0.023	77	0.955	-15	
60	0.983	-21	9.26	163	0.026	75	0.952	-17	
65	0.980	-22	9.19	162	0.028	74	0.947	-18	
70	0.977	-24	9.15	160	0.029	74	0.943	-20	
75	0.973	-25	9.11	159	0.031	74	0.942	-21	
80	0.970	-27	9.04	158	0.034	70	0.935	-22	
85	0.967	-29	8.98	157	0.035	71	0.932	-24	
90	0.963	-30	8.91	155	0.037	67	0.929	-25	
95	0.961	-32	8.90	154	0.039	68	0.924	-26	
100	0.957	-33	8.81	153	0.040	67	0.917	-27	
105	0.953	-35	8.77	151	0.041	64	0.916	-28	
109	0.950	-36	8.69	150	0.042	65	0.914	-30	
114	0.943	-38	8.62	149	0.045	63	0.906	-31	
119	0.940	-40	8.56	148	0.045	62	0.907	-32	
124	0.933	-41	8.49	146	0.049	61	0.901	-33	
129	0.933	-43	8.46	145	0.049	60	0.901	-35	
134	0.923	-44	8.37	144	0.052	59	0.896	-36	
139	0.921	-45	8.29	143	0.052	58	0.890	-37	
144	0.917	-47	8.22	142	0.055	57	0.885	-39	
149	0.913	-48	8.16	140	0.055	55	0.878	-40	

vailable.

may be

• •

6

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠
- Visit www.macomtech.com for additional data sheets and product information.

2W, 500MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07

f	S ₁₁		S	21	S ₁	2	S ₂₂	
MHz	^S 11	¢	S ₂₁	¢	S ₁₂	φ	S ₂₂	¢
154	0.911	-50	8.11	140	0.057	53	0.874	-41
159	0.905	51	8.02	138	0.059	54	0.868	-42
164	0.902	-52	7.94	137	0.059	53	0.863	-43
169	0.896	-54	7.87	136	0.062	52	0.856	-44
174	0.893	-55	7.79	135	0.063	50	0.851	-45
179	0.890	-56	7.71	134	0.062	50	0.846	-46
184	0.882	-58	7.64	133	0.065	48	0.845	-47
189	0.881	-59	7.59	132	0.065	47	0.840	-48
194	0.874	-60	7.53	131	0.066	47	0.834	-49
199	0.868	61	7.43	130	0.067	47	0.828	-50
204	0.864	-62	7.36	129	0.068	46	0.829	-51
209	0.861	-63	7.31	128	0.070	45	0.824	-52
214	0.856	-65	7.24	127	0.070	44	0.820	-53
219	0.853	-66	7.17	126	0.070	43	0.813	-54
224	0.848	-67	7.10	125	0.072	41	0.806	-55
229	0.847	-68	7.02	124	0.074	41	0.803	-56
234	0.841	-69	6.94	124	0.075	40	0.800	-57
239	0.839	-70	6.92	122	0.074	39	0.789	-58
244	0.832	-71	6.80	122	0.076	40	0.783	-59
249	0.828	-72	6.73	121	0.077	38	0.780	-60
254	0.825	-73	6.68	120	0.077	39	0.778	-60
259	0.820	-74	6.60	119	0.078	36	0.772	-61
264	0.816	-75	6.54	118	0.078	35	0.769	-62
269	0.813	-76	6.48	117	0.078	36	0.765	-63
274	0.810	-77	6.42	117	0.079	34	0.765	-64
279	0.806	-78	6.34	116	0.080	35	0.762	-64
284	0.799	-79	6.29	115	0.080	34	0.757	-65
289	0.800	-80	6.23	114	0.081	31	0.756	-66
294	0.795	81	6.18	113	0.081	33	0.753	-67
299	0.789	-82	6.12	113	0.084	31	0.750	-67
304	0.791	-83	6.07	112	0.082	31	0.742	-68
308	0.790	84	5.99	111	0.084	30	0.742	-69

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

vailable. may be

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

Table 1. Common Source S-Parameters (VDS = 13 V, ID = 100 mA) (continued)

f	S	11	S	21	S ₁	2	S	22
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ
318	0.784	-85	5.88	109	0.083	30	0.729	-70
323	0.779	-86	5.80	109	0.084	28	0.726	-71
328	0.778	-87	5.77	108	0.085	27	0.723	-72
333	0.773	-88	5.69	107	0.085	28	0.720	-72
338	0.771	-89	5.64	107	0.084	26	0.716	-73
343	0.766	-89	5.60	106	0.086	25	0.716	-74
348	0.766	-90	5.55	106	0.086	25	0.712	-74
353	0.763	-91	5.50	105	0.086	24	0.708	-75
358	0.761	-92	5.43	104	0.086	24	0.708	-75
363	0.761	-93	5.41	104	0.086	24	0.706	-76
368	0.755	-94	5.35	103	0.086	23	0.702	-77
373	0.753	-94	5.29	102	0.087	23	0.704	-77
378	0.752	-95	5.25	101	0.086	23	0.700	-78
383	0.750	-96	5.20	101	0.087	22	0.697	-79
388	0.747	-96	5.15	100	0.089	21	0.692	-79
393	0.742	-97	5.08	100	0.087	21	0.693	-80
398	0.741	-98	5.04	99	0.088	20	0.689	-81
403	0.743	-98	5.01	98	0.088	20	0.684	-81
408	0.740	-99	4.97	98	0.088	19	0.682	-81
413	0.734	-100	4.90	97	0.089	19	0.682	-82
418	0.738	-100	4.87	97	0.088	18	0.677	-83
423	0.733	-101	4.82	96	0.089	18	0.676	-83
428	0.735	-102	4.80	96	0.089	17	0.674	-84
433	0.731	-102	4.74	95	0.088	16	0.672	-84
438	0.732	-103	4.70	94	0.088	17	0.673	-85
443	0.728	-104	4.67	94	0.089	16	0.670	-85
448	0.729	-105	4.64	93	0.090	16	0.671	-86
453	0.727	-105	4.59	93	0.088	16	0.668	-86
458	0.723	-105	4.56	92	0.089	15	0.668	-87
463	0.721	-106	4.50	91	0.088	15	0.668	-87
468	0.720	-107	4.46	91	0.088	15	0.665	-87
473	0.719	-107	4.42	90	0.089	13	0.662	-88
478	0.717	-107	4.38	90	0.089	13	0.662	-89
483	0.717	-108	4.35	89	0.088	13	0.658	-89

vailable.

y be

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information. MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples commitment to produce in volume is not guaranteed.

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

Table 1. Common Source S–Parameters (V_{DS} = 13 V, I_D = 100 mA) (continued)

f	S	11	S	21	S	12	S	22
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ
488	0.715	-109	4.32	89	0.088	13	0.660	-89
493	0.714	-109	4.28	88	0.090	13	0.655	-90
498	0.714	-110	4.25	88	0.090	12	0.655	-91
503	0.713	-110	4.22	87	0.089	12	0.652	-91
507	0.712	-111	4.17	87	0.090	11	0.650	-91
512	0.711	-111	4.15	86	0.089	11	0.649	-92
517	0.706	-112	4.11	86	0.090	11	0.650	-92
522	0.705	-112	4.07	85	0.089	10	0.650	-93
527	0.706	-113	4.07	85	0.089	10	0.648	-93
532	0.705	-113	4.02	84	0.088	10	0.649	-93
537	0.704	-114	4.00	84	0.088	9	0.645	-94
542	0.704	-114	3.95	83	0.089	9	0.646	-94
547	0.704	-115	3.93	82	0.087	10	0.646	-95
552	0.704	-116	3.90	82	0.090	8	0.645	-95
557	0.702	-116	3.87	82	0.089	8	0.646	-96
562	0.699	-117	3.83	81	0.088	8	0.646	-96
567	0.699	-117	3.80	81	0.089	8	0.641	-96
572	0.700	-117	3.76	80	0.088	7	0.640	-97
577	0.699	-118	3.74	80	0.087	7	0.640	-97
582	0.698	-118	3.70	80	0.088	7	0.641	-98
587	0.699	-118	3.69	79	0.087	7	0.637	-98
592	0.697	-119	3.67	79	0.088	6	0.638	-98
597	0.698	-119	3.64	78	0.088	6	0.633	-99
602	0.698	-119	3.62	78	0.087	6	0.638	-99
607	0.695	-120	3.58	77	0.087	6	0.637	-99
612	0.696	-120	3.57	77	0.087	6	0.637	-100
617	0.694	-121	3.54	76	0.086	5	0.636	-100
622	0.695	-121	3.52	76	0.087	5	0.635	-100
627	0.692	-121	3.48	75	0.088	5	0.637	-101
632	0.691	-122	3.46	75	0.085	4	0.634	-101
637	0.691	-122	3.44	74	0.087	4	0.641	-102
642	0.689	-123	3.41	74	0.087	3	0.637	-102
647	0.687	-123	3.38	74	0.087	3	0.634	-103
652	0.689	-124	3.36	73	0.085	3	0.636	-103

vailable.

may be

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples commitment to produce in volume is not guaranteed. • North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information. MA-COM Technology Solutions more and its affiliates reserve the right to make changes to the product solution or additional plained herein without notice.

M/A-COM Products

Released - Rev. 07.07

2W, 500MHz, 28V

M/A-COM Products

Released - Rev. 07.07

Table 1. Common Source S–Parameters (V _{DS} = 13 V, I _D = 100 mA) (continued)											
f	S	s ₁₁		21	S	12	s	22			
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ			
657	0.686	-124	3.34	73	0.086	1	0.635	-103			
662	0.688	-125	3.30	72	0.086	3	0.634	-104			
667	0.689	-125	3.28	72	0.086	2	0.634	-104			
672	0.693	-125	3.27	72	0.086	2	0.631	-104			
677	0.687	-126	3.24	71	0.086	1	0.632	-104			
682	0.689	-126	3.22	71	0.083	1	0.629	-105			
687	0.687	-126	3.20	70	0.083	1	0.630	-105			
692	0.686	-127	3.17	70	0.083	1	0.630	-105			
697	0.690	-127	3.16	70	0.083	0	0.630	-106			
702	0.687	-127	3.14	69	0.084	0	0.627	-106			
706	0.688	-128	3.12	69	0.083	1	0.630	-106			
711	0.685	-128	3.10	68	0.083	0	0.632	-107			
716	0.686	-128	3.08	68	0.085	0	0.636	-107			
721	0.688	-128	3.08	68	0.084	-1	0.634	-107			
726	0.685	-129	3.05	67	0.083	0	0.634	-108			
731	0.685	-130	3.02	67	0.083	-1	0.634	-108			
736	0.684	-130	3.01	66	0.083	-1	0.635	-108			
741	0.680	-130	2.98	66	0.082	-1	0.631	-109			
746	0.681	-130	2.97	65	0.083	-2	0.636	-109			
751	0.682	-131	2.96	65	0.082	-2	0.631	-110			
756	0.683	-131	2.93	65	0.082	-2	0.632	-109			
761	0.681	-132	2.90	64	0.082	-1	0.630	-110			
766	0.683	-132	2.89	64	0.083	-3	0.632	-110			
771	0.684	-132	2.87	64	0.082	-3	0.631	-110			
776	0.682	-133	2.85	63	0.081	-4	0.628	-111			
781	0.684	-133	2.85	63	0.080	-3	0.630	-111			
786	0.686	-133	2.83	63	0.079	-4	0.629	-111			
791	0.684	-134	2.81	62	0.080	-3	0.632	-112			
796	0.685	-134	2.79	62	0.080	-4	0.631	-112			
801	0.683	-134	2.77	62	0.079	-4	0.634	-112			
806	0.685	-134	2.75	61	0.079	-2	0.632	-112			
811	0.683	-135	2.75	61	0.078	-4	0.635	-113			
816	0.684	-135	2.73	60	0.079	-4	0.637	-113			
821	0.683	-135	2.70	60	0.077	-3	0.633	-113			
826	0.682	-135	2.69	60	0.078	5	0.637	-114			

¹⁰

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be realable. Commitment to produce in volume is not guaranteed.

2W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

	Table	1. Common S	ource S-Para	ameters (VDS	= 13 V, I _D = 1	00 mA) (cont	tinued)	
f	S	11	S	21	S	12	S	22
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ
831	0.682	-136	2.67	59	0.077	-4	0.635	-114
836	0.681	-136	2.66	59	0.077	-5	0.638	-114
841	0.681	-136	2.64	58	0.079	-4	0.635	-115
846	0.679	-137	2.63	58	0.078	-4	0.637	-115
851	0.678	-137	2.61	58	0.077	-5	0.634	-115
856	0.682	-137	2.59	57	0.077	-5	0.635	-115
861	0.680	-137	2.59	57	0.077	-4	0.634	-115
866	0.681	-138	2.57	57	0.077	-6	0.635	-116
871	0.682	-138	2.55	56	0.075	-6	0.633	-116
876	0.684	-139	2.54	56	0.075	-5	0.631	-116
881	0.683	-139	2.53	56	0.075	-5	0.635	-117
886	0.681	-139	2.52	55	0.074	-6	0.633	-117
891	0.685	-140	2.50	55	0.074	-6	0.633	-117
896	0.683	-140	2.49	55	0.075	-6	0.638	-117
901	0.680	-140	2.47	54	0.073	-5	0.640	-118
905	0.681	-140	2.46	54	0.074	-7	0.637	-118
910	0.684	-140	2.44	54	0.074	-8	0.639	-118
915	0.683	-141	2.43	53	0.073	-6	0.639	-119
920	0.686	-141	2.42	53	0.074	-6	0.643	-119
925	0.683	-141	2.40	53	0.073	-7	0.641	-119
930	0.684	-141	2.39	52	0.072	-7	0.640	-120
935	0.682	-142	2.38	52	0.073	6	0.638	-120
940	0.685	-142	2.37	52	0.072	6	0.639	-120
945	0.683	-142	2.36	51	0.072	-7	0.638	-120
950	0.683	-143	2.34	51	0.071	-7	0.639	-120
955	0.683	-143	2.33	51	0.070	-7	0.638	-120
960	0.683	-143	2.32	51	0.073	-8	0.640	-121
965	0.683	-143	2.31	50	0.070	-8	0.640	-121
970	0.684	-144	2.30	50	0.071	-7	0.643	-121
975	0.684	-144	2.28	50	0.069	-8	0.640	-121
980	0.682	-144	2.27	49	0.068	-6	0.641	-122
985	0.685	-144	2.26	49	0.069	-9	0.643	-122
990	0.684	-145	2.25	48	0.067	-8	0.644	-122
995	0.683	-145	2.24	48	0.069	-8	0.644	-123
1000	0.684	-145	2.23	48	0.068	-8	0.643	-123

¹¹

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be realable. Commitment to produce in volume is not guaranteed.

2W, 500MHz, 28V

M/A-COM Products

Released - Rev. 07.07

Table 2. Common Source S–Parameters (V _{DS} = 28 V, I _D = 100 mA)											
f	s ₁₁		S	21	s ₁	2	S2	22			
MHz	^S 11	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ			
5	1.002	-1	7.98	179	0.001	80	0.966	-1			
10	0.999	-3	7.99	178	0.003	105	0.969	-2			
15	0.999	-4	8.03	176	0.005	87	0.962	-3			
20	0.998	-6	7.99	175	0.007	72	0.959	-4			
25	0.999	-7	8.00	174	0.008	82	0.959	-5			
30	0.997	-9	7.97	173	0.010	89	0.962	-6			
35	0.999	-10	7.95	172	0.012	85	0.961	-7			
40	0.996	-12	7.94	170	0.014	74	0.962	-8			
45	0.994	-13	7.95	169	0.015	77	0.960	-9			
50	0.991	-15	7.91	168	0.017	79	0.959	-10			
55	0.990	-16	7.88	167	0.017	83	0.959	-11			
60	0.988	-18	7.91	165	0.021	77	0.957	-12			
65	0.989	-19	7.85	164	0.020	76	0.957	-13			
70	0.983	-20	7.83	163	0.022	74	0.954	-15			
75	0.981	-22	7.80	162	0.025	78	0.952	-16			
80	0.980	-23	7.76	161	0.026	73	0.948	-17			
85	0.979	-25	7.72	160	0.026	72	0.946	–18			
90	0.977	-26	7.67	158	0.029	72	0.944	-19			
95	0.973	-28	7.68	157	0.030	68	0.939	-19			
100	0.970	-29	7.62	156	0.031	68	0.934	-20			
105	0.970	-30	7.60	155	0.031	68	0.932	-21			
109	0.967	-32	7.54	154	0.034	66	0.931	-22			
114	0.961	-33	7.49	153	0.034	67	0.926	-23			
119	0.960	-34	7.46	152	0.036	66	0.925	-24			
124	0.956	-36	7.42	150	0.038	65	0.923	-25			
129	0.954	-37	7.41	149	0.039	65	0.923	-26			
134	0.948	-38	7.35	148	0.041	63	0.920	-27			
139	0.946	-40	7.29	147	0.042	61	0.916	-28			
144	0.944	-41	7.25	146	0.044	61	0.913	-29			
149	0.939	-42	7.20	145	0.044	60	0.909	-30			
154	0.939	-43	7.17	144	0.046	60	0.904	-31			
159	0.935	-45	7.11	143	0.046	58	0.900	-32			
164	0.932	-46	7.06	142	0.048	57	0.897	-33			
169	0.928	-47	7.01	141	0.049	59	0.891	-34			
174	0.927	-48	6.94	140	0.049	55	0.885	-34			

¹²

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable. may be

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_D = 100 mA)

f	S	11	S	21	S ₁	2	S ₂	22
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ
179	0.922	-49	6.89	139	0.051	55	0.882	-35
184	0.918	51	6.85	138	0.052	54	0.883	-36
189	0.915	-52	6.82	137	0.053	53	0.878	-36
194	0.912	-53	6.78	136	0.053	50	0.874	-37
199	0.904	-54	6.71	135	0.054	52	0.867	-38
204	0.902	55	6.65	134	0.054	51	0.868	-39
209	0.902	-56	6.62	133	0.056	50	0.866	-39
214	0.898	-58	6.57	132	0.058	50	0.863	-40
219	0.896	-59	6.52	132	0.059	49	0.858	-41
224	0.888	-60	6.47	131	0.059	48	0.850	-42
229	0.887	-61	6.42	130	0.060	46	0.847	-43
234	0.885	-62	6.36	129	0.061	46	0.846	-44
239	0.882	-63	6.35	128	0.062	46	0.837	-45
244	0.876	64	6.25	127	0.062	45	0.833	-45
249	0.872	-65	6.19	126	0.063	43	0.829	-46
254	0.869	-66	6.15	125	0.064	43	0.828	-47
259	0.867	-67	6.09	125	0.065	43	0.823	-47
264	0.863	-68	6.06	124	0.065	42	0.818	-48
269	0.860	-69	6.01	123	0.065	42	0.816	-48
274	0.856	-70	5.95	122	0.067	41	0.815	-49
279	0.854	-71	5.91	121	0.068	40	0.812	-50
284	0.848	-72	5.87	120	0.068	39	0.809	-50
289	0.849	-73	5.84	120	0.068	38	0.807	51
294	0.845	-74	5.78	119	0.069	38	0.805	-52
299	0.840	-75	5.73	118	0.070	36	0.800	-53
304	0.839	-75	5.68	117	0.068	37	0.795	-53
308	0.840	-76	5.63	117	0.069	35	0.793	-54
313	0.835	-77	5.59	116	0.071	35	0.790	-55
318	0.832	-78	5.54	115	0.071	35	0.784	-55
323	0.829	-79	5.48	114	0.070	34	0.783	-56
328	0.829	-80	5.45	114	0.072	33	0.778	-56
333	0.825	81	5.39	113	0.071	33	0.776	-57
338	0.821	-82	5.35	112	0.073	32	0.771	-58

M/A-COM Products

Released - Rev. 07.07

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are • North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.

wailable. M/A-COM Technology Solutions normal its iffiliates reserve the right to make Changes in the procled is bolin ormation contained herein without notice.

typical. Mechanical outline has been fixed. Engineering samples ad/or test date Commitment to produce in volume is not guaranteed.

may be

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07

Table 2. Common Source S–Parameters (V _{DS} = 28 V, I _D = 100 mA)									
f	S ₁₁		S ₂₁		s ₁₂		S ₂₂		
MHz	S ₁₁	¢	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ	
343	0.818	-82	5.31	111	0.072	32	0.770	-58	
348	0.816	-83	5.25	111	0.074	30	0.765	-59	
353	0.814	-84	5.23	110	0.074	31	0.764	-59	
358	0.810	-85	5.18	110	0.073	30	0.764	-59	
363	0.810	85	5.16	109	0.074	30	0.761	-60	
368	0.807	-86	5.11	108	0.074	29	0.756	-61	
373	0.805	-87	5.07	107	0.075	29	0.760	-61	
378	0.801	-88	5.03	107	0.075	27	0.753	-62	
383	0.799	-88	4.98	106	0.075	27	0.752	-62	
388	0.796	-89	4.94	105	0.074	27	0.748	-63	
393	0.796	-90	4.88	105	0.077	26	0.748	-63	
398	0.790	-91	4.85	104	0.075	26	0.743	-64	
403	0.794	-91	4.82	103	0.076	25	0.739	-64	
408	0.789	-92	4.78	103	0.077	26	0.738	-65	
413	0.785	-92	4.73	102	0.076	25	0.736	-66	
418	0.788	-93	4.70	102	0.076	24	0.732	-66	
423	0.783	-94	4.66	101	0.077	24	0.730	-66	
428	0.784	-95	4.64	101	0.079	23	0.728	-67	
433	0.779	-95	4.60	100	0.078	23	0.727	-67	
438	0.779	-96	4.55	99	0.078	22	0.727	-68	
443	0.775	-97	4.52	99	0.077	21	0.725	-68	
448	0.778	-98	4.51	98	0.078	21	0.725	-69	
453	0.776	-98	4.46	98	0.078	21	0.719	-69	
458	0.771	-99	4.43	97	0.078	21	0.720	-70	
463	0.771	-99	4.39	96	0.079	20	0.723	-70	
468	0.769	-100	4.36	95	0.079	19	0.716	-71	
473	0.767	-100	4.31	95	0.079	18	0.716	-71	
478	0.765	-101	4.28	95	0.078	20	0.716	-72	
483	0.764	-101	4.24	94	0.079	19	0.710	-72	
488	0.763	-102	4.22	94	0.079	19	0.711	-72	
493	0.762	-103	4.18	93	0.079	18	0.709	-73	
498	0.760	-103	4.15	93	0.080	17	0.706	-73	
503	0.760	-104	4.12	92	0.079	16	0.705	-74	
507	0.758	-104	4.10	91	0.079	17	0.701	-74	

14

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable. may be

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07

f MHz	s ₁₁		s ₂₁		s ₁₂		s ₂₂	
	^S 11	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ
512	0.758	-105	4.08	91	0.079	16	0.700	-74
517	0.751	-105	4.03	90	0.078	16	0.700	-75
522	0.750	-106	4.00	90	0.080	15	0.700	-75
527	0.753	-106	4.00	89	0.079	16	0.698	-76
532	0.750	-107	3.96	89	0.079	14	0.699	-76
537	0.749	-107	3.94	88	0.079	15	0.696	-76
542	0.748	-108	3.90	87	0.080	13	0.696	-77
547	0.749	-109	3.88	87	0.080	13	0.697	-77
552	0.750	-109	3.85	87	0.079	14	0.693	-78
557	0.747	-110	3.82	86	0.078	13	0.697	-78
562	0.743	-110	3.78	86	0.079	12	0.695	-79
567	0.744	-111	3.75	85	0.079	12	0.689	-79
572	0.742	-111	3.73	85	0.078	11	0.690	-79
577	0.743	-112	3.70	84	0.080	12	0.689	-80
582	0.743	-112	3.67	84	0.080	11	0.691	-80
587	0.742	-112	3.64	83	0.078	11	0.688	-80
592	0.740	-113	3.62	83	0.080	10	0.685	-81
597	0.741	-113	3.61	82	0.078	10	0.682	-81
602	0.739	-114	3.59	82	0.078	10	0.685	-82
607	0.736	-114	3.56	82	0.079	9	0.682	-82
612	0.737	-115	3.53	81	0.077	9	0.684	-82
617	0.735	-115	3.52	81	0.078	10	0.682	-82
622	0.736	-115	3.50	80	0.078	9	0.680	-83
627	0.732	-116	3.47	80	0.078	8	0.681	-83
632	0.733	-117	3.45	79	0.077	8	0.682	-84
637	0.730	-117	3.41	79	0.078	8	0.684	-84
642	0.731	-117	3.40	78	0.077	8	0.683	-85
647	0.728	-118	3.37	78	0.077	7	0.679	-85
652	0.730	-118	3.35	77	0.077	8	0.679	-85
657	0.725	-119	3.32	77	0.077	7	0.679	-85
662	0.725	-119	3.29	76	0.079	6	0.679	-86
667	0.727	-120	3.27	76	0.078	5	0.677	-86
672	0.731	-120	3.26	75	0.077	6	0.676	-86

15

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are vailable. may be

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

	Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_D = 100 mA) (continued)									
f	s ₁₁		s ₂₁		s ₁₂		\$ ₂₂			
MHz	S ₁₁	φ	S ₂₁	¢	S ₁₂	φ	S ₂₂	φ		
682	0.725	-121	3.21	75	0.077	4	0.673	-87		
687	0.726	-121	3.19	74	0.078	6	0.672	-87		
692	0.724	-121	3.17	74	0.076	6	0.672	-88		
697	0.728	-122	3.17	74	0.075	6	0.672	-88		
702	0.724	-122	3.13	73	0.075	5	0.672	-88		
706	0.724	-122	3.12	73	0.077	5	0.670	-89		
711	0.722	-123	3.10	72	0.077	5	0.674	-89		
716	0.722	-123	3.09	72	0.076	4	0.676	-89		
721	0.723	-124	3.08	71	0.075	2	0.674	-90		
726	0.720	-124	3.05	71	0.075	4	0.672	-90		
731	0.719	-124	3.03	70	0.075	4	0.676	-90		
736	0.720	-125	3.02	70	0.076	3	0.675	-91		
741	0.716	-125	2.99	70	0.075	2	0.672	-91		
746	0.718	-126	2.98	69	0.075	3	0.677	-91		
751	0.715	-126	2.97	69	0.075	3	0.670	-92		
756	0.717	-126	2.94	68	0.075	3	0.673	-92		
761	0.716	-127	2.92	68	0.075	2	0.668	-92		
766	0.717	-127	2.90	67	0.075	2	0.673	-93		
771	0.717	-128	2.88	67	0.073	2	0.669	-93		
776	0.714	-128	2.86	67	0.076	1	0.668	-93		
781	0.718	-128	2.86	66	0.074	1	0.668	-93		
786	0.718	-129	2.85	66	0.073	1	0.670	-94		
791	0.718	-129	2.82	66	0.073	1	0.670	-94		
796	0.716	-129	2.81	65	0.072	0	0.668	-94		
801	0.715	-130	2.79	65	0.073	-1	0.671	-95		
806	0.718	-130	2.77	65	0.071	1	0.669	-95		
811	0.714	-130	2.77	64	0.072	0	0.672	-95		
816	0.714	-130	2.74	64	0.072	0	0.673	-96		
821	0.714	-131	2.72	63	0.070	0	0.671	-96		
826	0.715	-131	2.71	63	0.073	0	0.675	-96		
831	0.713	-131	2.69	63	0.071	0	0.672	-96		
836	0.713	-131	2.68	62	0.072	-1	0.672	-97		
841	0.712	-132	2.67	62	0.069	0	0.671	-97		
846	0.710	-132	2.65	61	0.071	-1	0.672	-97		
851	0.708	-132	2.63	61	0.071	-1	0.670	-97		

16

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable. may be

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

The Broadband RF TMOS[®] Line

2W, 500MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07

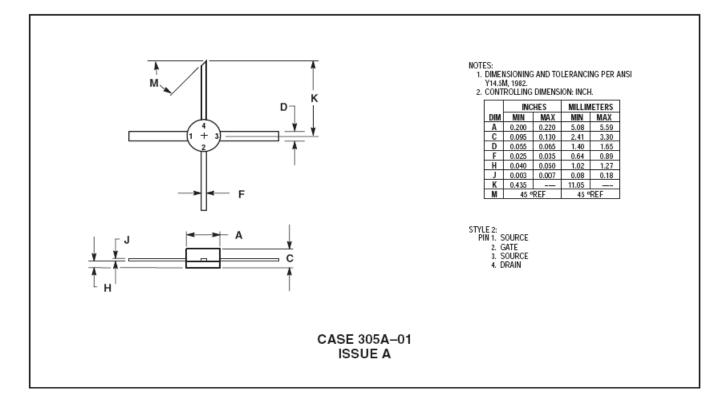
Table 2. Common Source S–Parameters (V _{DS} = 28 V, I _D = 100 mA) (continued)								
f MHz	s ₁₁		s ₂₁		s ₁₂		\$ ₂₂	
	S ₁₁	¢	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ́
856	0.712	-133	2.62	61	0.071	-2	0.669	-98
861	0.710	-133	2.61	61	0.071	-2	0.669	-98
866	0.710	-134	2.59	60	0.071	-2	0.669	-98
871	0.710	-134	2.58	60	0.071	-2	0.669	-98
876	0.713	-134	2.57	59	0.069	-3	0.666	-99
881	0.711	-135	2.56	59	0.068	-3	0.667	-99
886	0.710	-135	2.54	59	0.069	-3	0.666	-99
891	0.711	-135	2.52	58	0.067	-3	0.668	-100
896	0.711	-136	2.52	58	0.070	-2	0.670	-100
901	0.709	-136	2.50	57	0.069	-5	0.669	-101
905	0.711	-136	2.49	57	0.069	-3	0.671	-101
910	0.711	-136	2.47	57	0.068	-4	0.674	-101
915	0.710	-137	2.46	56	0.068	-2	0.673	-101
920	0.712	-137	2.45	56	0.066	-4	0.673	-102
925	0.708	-137	2.42	56	0.067	-4	0.673	-102
930	0.709	-137	2.42	55	0.068	-3	0.673	-102
935	0.709	-138	2.41	55	0.066	-4	0.670	-102
940	0.709	-138	2.40	55	0.066	-2	0.672	-102
945	0.709	-138	2.39	54	0.065	-3	0.672	-103
950	0.708	-139	2.38	54	0.066	-4	0.671	-103
955	0.711	-139	2.36	54	0.065	-5	0.669	-103
960	0.709	-139	2.35	54	0.064	-4	0.672	-103
965	0.708	-140	2.34	53	0.064	-3	0.671	-104
970	0.707	-140	2.33	53	0.065	-5	0.673	-104
975	0.706	-140	2.32	52	0.065	-4	0.671	-104
980	0.707	-140	2.30	52	0.065	-4	0.669	-104
985	0.707	-140	2.29	51	0.064	6	0.674	-105
990	0.708	-141	2.28	51	0.063	-4	0.674	-105
995	0.708	-141	2.28	51	0.063	-5	0.674	-105
1000	0.710	-141	2.26	50	0.063	-5	0.676	-106

17

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable.

may be

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.



M/A-COM Products

Released - Rev. 07.07

The Broadband RF TMOS[®] Line 2W, 500MHz, 28V

PACKAGE DIMENSIONS

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test dotte may be vailable. Commitment to produce in volume is not guaranteed.

18

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.
- visit www.macomtecn.com for additional data sheets and product information