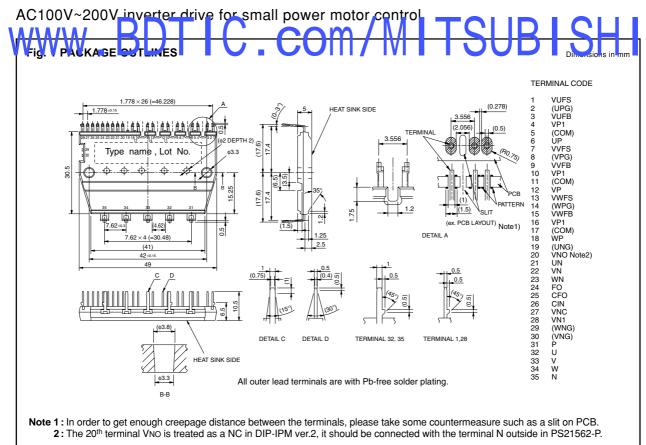
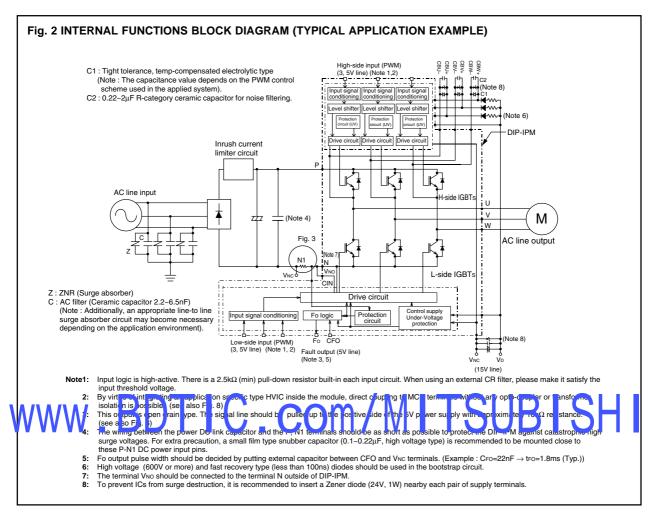
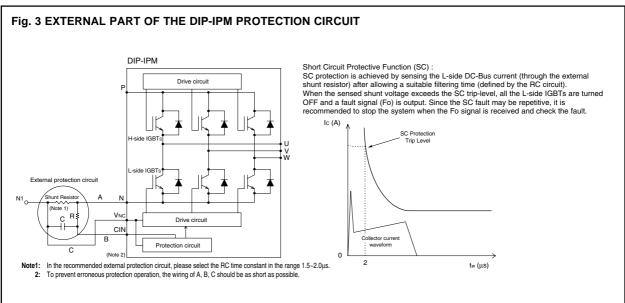

MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>


PS21562-P

TRANSFER-MOLD TYPE INSULATED TYPE




- Input interface : 3, 5V line CMOS/TTL compatible. (High Active)
- UL Approved : Yellow Card No. E80276


# APPLICATION





TRANSFER-MOLD TYPE INSULATED TYPE





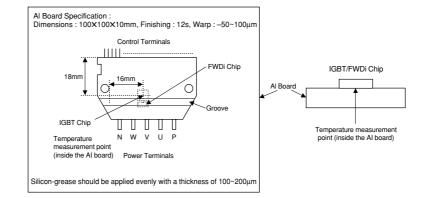


TRANSFER-MOLD TYPE INSULATED TYPE

#### MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART

| Symbol     | Parameter                          | Condition                |          | Ratings  | Unit |
|------------|------------------------------------|--------------------------|----------|----------|------|
| Vcc        | Supply voltage                     | Applied between P-N      |          | 450      | V    |
| VCC(surge) | Supply voltage (surge)             | Applied between P-N      |          | 500      | V    |
| VCES       | Collector-emitter voltage          |                          |          | 600      | V    |
| ±lc        | Each IGBT collector current        | Tf = 25°C                |          | 5        | A    |
| ±ICΡ       | Each IGBT collector current (peak) | Tf = 25°C, less than 1ms |          | 10       | A    |
| Pc         | Collector dissipation              | Tf = 25°C, per 1 chip    |          | 16.7     | W    |
| Tj         | Junction temperature               |                          | (Note 1) | -20~+125 | °C   |

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tf ≤ 100°C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tf ≤ 100°C).


## **CONTROL (PROTECTION) PART**

| Symbol | Parameter                     | Condition                                          | Ratings     | Unit |
|--------|-------------------------------|----------------------------------------------------|-------------|------|
| Vd     | Control supply voltage        | Applied between VP1-VNC, VN1-VNC                   | 20          | V    |
| Vdb    | Control supply voltage        | Applied between VUFB-VUFS, VVFB-VVFS,<br>VWFB-VWFS | 20          | V    |
| VIN    | Input voltage                 | Applied between UP, VP, WP, UN, VN,<br>WN-VNC      | -0.5~VD+0.5 | V    |
| Vfo    | Fault output supply voltage   | Applied between FO-VNC                             | -0.5~VD+0.5 | V    |
| IFO    | Fault output current          | Sink current at Fo terminal                        | 1           | mA   |
| Vsc    | Current sensing input voltage | Applied between CIN-VNC                            | -0.5~VD+0.5 | V    |

# VOTAL FYRTEM BDT C COM/MITSUBLEH

| Dyi Dyi   |                                                                            |                                                                                                    | liga l   |      |
|-----------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|------|
| VCC(PROT) | Self protection supply voltage limit (short circuit protection capability) | $V_D = 13.5 \sim 16.5 V$ , Inverter part<br>T <sub>j</sub> = 125°C, non-repetitive, less than 2 µs | 400      | V    |
| Tf        | Module case operation temperature                                          | (Note 2)                                                                                           | -20~+100 | °C   |
| Tstg      | Storage temperature                                                        |                                                                                                    | -40~+125 | °C   |
| Viso      | Isolation voltage                                                          | 60Hz, Sinusoidal, 1 minute,<br>All connected pins to heat-sink plate                               | 2500     | Vrms |

#### Note 2 : Tf measurement point





# TRANSFER-MOLD TYPE INSULATED TYPE

#### THERMAL RESISTANCE

| Cumhal           | Devementer                                             | Condition                           | Limits |      |      | Linit |
|------------------|--------------------------------------------------------|-------------------------------------|--------|------|------|-------|
| Symbol Parameter |                                                        | Condition                           |        | Тур. | Max. | Unit  |
| Rth(j-f)Q        | Junction to case thermal                               | Inverter IGBT part (per 1/6 module) | —      | _    | 6.0  | °C/W  |
| Rth(j-f)F        | resistance (Note 3) Inverter FWD part (per 1/6 module) |                                     |        | _    | 6.5  | °C/W  |

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM and heat-sink.

# **ELECTRICAL CHARACTERISTICS** (Tj = $25^{\circ}$ C, unless otherwise noted) **INVERTER PART**

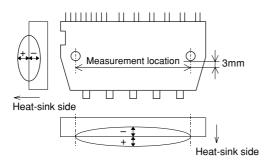
| Cumphel   | Demonstern                   |                                         | Condition                                                                                                           |      | Limits |      |      |
|-----------|------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|--------|------|------|
| Symbol    | Parameter                    |                                         |                                                                                                                     |      | Тур.   | Max. | Unit |
| VCE(sat)  | Collector-emitter saturation | VD = VDB = 15V IC = 5A, Tj = 25°C       |                                                                                                                     | -    | 1.60   | 2.10 | V    |
| V CE(Sal) | voltage                      | VIN = 5V                                | IC = 5A, Tj = 125°C                                                                                                 | -    | 1.70   | 2.20 | V    |
| VEC       | FWD forward voltage          | $T_j = 25^{\circ}C, -IC = 5A, VIN = 0V$ |                                                                                                                     | -    | 1.50   | 2.00 | V    |
| ton       |                              |                                         |                                                                                                                     | 0.60 | 1.20   | 1.80 | μs   |
| trr       |                              | VCC = 300V, VD = VDB =                  | Vcc = 300V, VD = VDB = 15V<br>Ic = 5A, Tj = 125°C, VIN = $0 \leftrightarrow 5V$<br>Inductive load (upper-lower arm) |      | 0.30   | —    | μs   |
| tc(on)    | Switching times              | IC = 5A, Tj = 125°C, VIN                |                                                                                                                     |      | 0.40   | 0.60 | μs   |
| toff      | 1                            | Inductive load (upper-lo                |                                                                                                                     |      | 1.30   | 2.00 | μs   |
| tc(off)   |                              |                                         |                                                                                                                     | —    | 0.50   | 0.80 | μs   |
| ICES      | Collector-emitter cut-off    |                                         | $T_j = 25^{\circ}C$                                                                                                 | _    | _      | 1    | mA   |
|           | current VCE = VCES           |                                         | Tj = 125°C                                                                                                          | _    |        | 10   | ША   |

# CONTROL (PROTECTION, PANT Sympo Parameter Condition Emails VD = VDB = 15V Total of VP1-VNC, VN1-VNC -

|          |                              | VD = VDB = 15V                                      | Iotal o             | N VP1-VNC, VN1-V                | NC        |      |      | 0.00 |    |
|----------|------------------------------|-----------------------------------------------------|---------------------|---------------------------------|-----------|------|------|------|----|
| In       | Circuit current              | VIN = 5V                                            | VUFB-               | VUFB-VUFS, VVFB-VVFS, VWFB-VWFS |           | —    | —    | 0.40 | mA |
| ID       |                              | VD = VDB = 15V Total of VP1-VNC, VN1-VNC            |                     | _                               | —         | 7.00 | IIIA |      |    |
|          |                              | VIN = 0V                                            | VUFB-               | /UFS, VVFB-VVFS,                | VWFB-VWFS | _    | _    | 0.55 |    |
| VFOH     | - Fault output voltage       | Vsc = 0V, Fo circuit pull-up to 5V with $10k\Omega$ |                     |                                 | 4.9       | —    | —    | V    |    |
| VFOL     |                              | VSC = 1V, IFO = 1m                                  | VSC = 1V, IFO = 1mA |                                 |           | _    | _    | 0.95 | V  |
| VSC(ref) | Short circuit trip level     | Tf = -20~100°C, VD = 15V (Note 4)                   |                     | 0.45                            | —         | 0.52 | V    |      |    |
| lin      | Input current                | VIN = 5V                                            |                     | 1.0                             | 1.5       | 2.0  | mA   |      |    |
| UVDBt    |                              |                                                     |                     | Trip level                      |           | 10.0 | —    | 12.0 | V  |
| UVDBr    | Control supply under-voltage |                                                     |                     | Reset level                     |           | 10.5 | —    | 12.5 | V  |
| UVDt     | protection                   | lj≤ 125°C                                           |                     | Trip level                      |           | 10.3 | _    | 12.5 | V  |
| UVDr     |                              |                                                     |                     | Reset level                     |           | 10.8 | —    | 13.0 | V  |
| tFO      | Fault output pulse width     | CFO = 22nF                                          |                     |                                 | (Note 5)  | 1.0  | 1.8  | _    | ms |
| Vth(on)  | ON threshold voltage         | Applied between LL                                  |                     |                                 | 2.1       | 2.3  | 2.6  | V    |    |
| Vth(off) | OFF threshold voltage        | Applied between UP, VP, WP-VNC, UN, VN, WN-VNC      |                     |                                 | 0.8       | 1.4  | 2.1  | V    |    |

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.

5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure. The fault output pulse width tFO depends on the capacitance value of CFO according to the following approximate equation : CFO = 12.2 X 10<sup>-6</sup> X tFO [F].




**TRANSFER-MOLD TYPE INSULATED TYPE** 

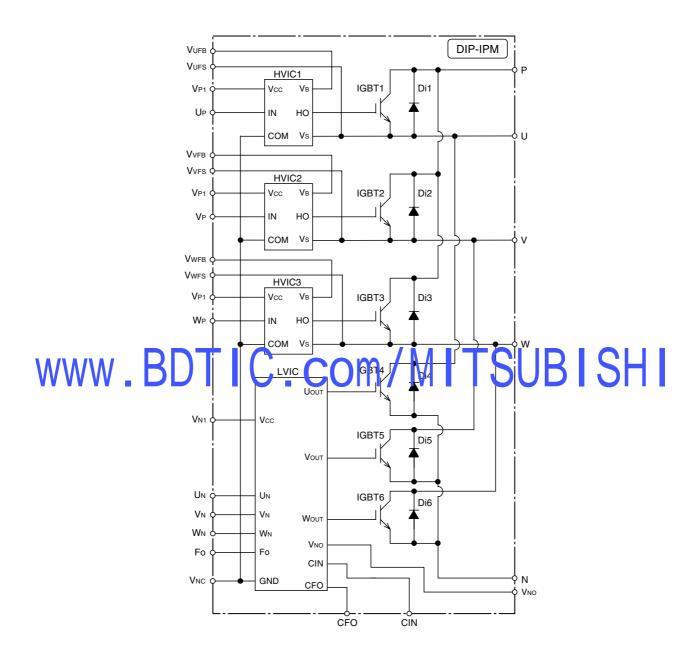
## MECHANICAL CHARACTERISTICS AND RATINGS

| Deremeter          | Con                                        | Limits |      |      | Unit |      |
|--------------------|--------------------------------------------|--------|------|------|------|------|
| Parameter          | Condition                                  |        |      | Тур. | Max. | Unit |
| Mounting torque    | Mounting screw : M3 Recommended : 0.78 N·m |        | 0.59 | —    | 0.98 | N∙m  |
| Weight             |                                            |        | —    | 20   | —    | g    |
| Heat-sink flatness |                                            | -50    | _    | 100  | μm   |      |

#### Note 6: Measurement point of heat-sink flatness



# COM/MITCHRI PECOMMENDED OPERATION CONDITIONS


| Symbol                                |                                                                                                                                             |                                                          |                                                      | Fec  | Fecommer dec value |      | Unit    |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|------|--------------------|------|---------|
| Зупрог                                | r arâlheier                                                                                                                                 |                                                          |                                                      | Min. | Тур.               | Max. | Gritt – |
| Vcc                                   | Supply voltage                                                                                                                              | Applied between P-N                                      |                                                      |      | 300                | 400  | V       |
| VD                                    | Control supply voltage                                                                                                                      | Applied between VP1-VNC, VN1-VN                          | IC                                                   | 13.5 | 15.0               | 16.5 | V       |
| Vdb                                   | Control supply voltage                                                                                                                      | Applied between VUFB-VUFS, VVFB                          | B-VVFS, VWFB-VWFS                                    | 13.0 | 15.0               | 18.5 | V       |
| $\Delta \text{Vd}, \Delta \text{Vdb}$ | Control supply variation                                                                                                                    |                                                          |                                                      | -1   | _                  | 1    | V/µs    |
| tdead                                 | Arm shoot-through blocking time                                                                                                             | For each input signal, $Tf \le 100^{\circ}C$             | For each input signal, Tf ≤ 100°C                    |      | —                  | —    | μs      |
| fpwm                                  | PWM input frequency                                                                                                                         | Tf ≤ 100°C, Tj ≤ 125°C                                   |                                                      | —    | —                  | 20   | kHz     |
|                                       |                                                                                                                                             | VCC = 300V, VD = VDB = 15V,                              | fPWM = 5kHz                                          | —    | —                  | 3.5  |         |
| IO Allowable r.m.s. current           | $\begin{array}{l} P.F = 0.8, \mbox{ sinusoidal output} \\ Tf \leq 100^{\circ}C, \mbox{ Tj} \leq 125^{\circ}C \qquad (Note \ 7) \end{array}$ | fPWM = 15kHz                                             |                                                      | _    | 3.2                | Arms |         |
| PWIN(on)                              |                                                                                                                                             |                                                          | (Note 8)                                             | 0.3  | —                  | —    |         |
|                                       | <b>A</b> III I.I. I.I. I.I. I.                                                                                                              | $200 \le VCC \le 350V$ ,<br>$13.5 \le VD \le 16.5V$ ,    | Below rated current                                  | 0.5  | _                  | _    |         |
| PWIN(off)                             | Allowable minimum input<br>pulse width                                                                                                      | $13.0 \le VDB \le 18.5V$ ,<br>-20°C $\le Tf \le 100°C$ , | Between rated current and 1.7 times of rated current | 0.5  | _                  | -    | μs      |
|                                       |                                                                                                                                             | N-line wiring inductance less than<br>10nH (Note 9)      | Between 1.7 times and 2.0 times of rated current     | 0.5  | _                  | _    |         |
| VNC                                   | VNC variation                                                                                                                               | Between VNC-N (including surge)                          |                                                      | -5.0 | —                  | 5.0  | V       |

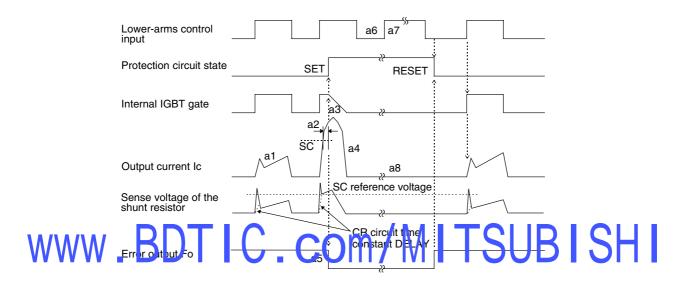
Note 7: The allowable r.m.s. current value depends on the actual application conditions.
8: The input pulse width less than PWIN(on) might make no response.
9: IPM might not work properly or make response for the input signal with OFF pulse width less than PWIN(off). Please refer to Fig.7.



TRANSFER-MOLD TYPE INSULATED TYPE

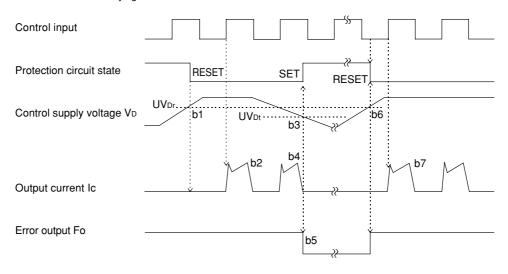
## Fig. 4 THE DIP-IPM INTERNAL CIRCUIT






**TRANSFER-MOLD TYPE INSULATED TYPE** 

#### Fig. 5 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS

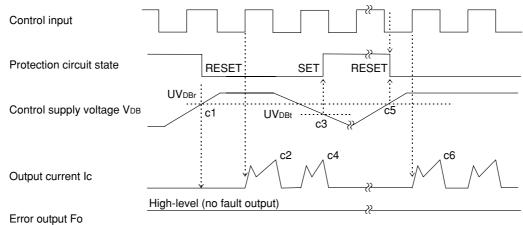

[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation : IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. FO timer operation starts : The pulse width of the FO signal is set by the external capacitor CFO.
- a6. Input "L" : IGBT OFF. a7. Input "H" : IGBT ON.
- a8. IGBT OFF in spite of input "H".

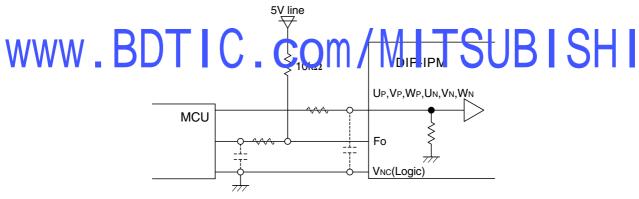


#### [B] Under-Voltage Protection (Lower-arm, UVD)

- b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo operation starts.
- b6. Under voltage reset (UVDr).
- b7. Normal operation : IGBT ON and carrying current.



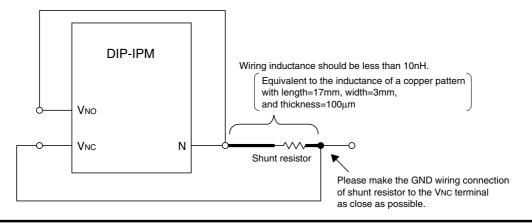




# **TRANSFER-MOLD TYPE INSULATED TYPE**

## [C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises : After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation : IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr)
- c6. Normal operation : IGBT ON and carrying current.

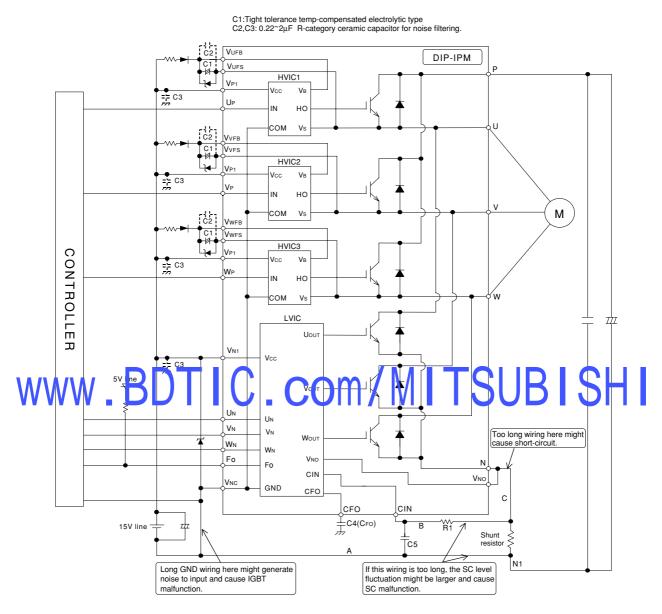



# Fig. 6 RECOMMENDED CPU I/O INTERFACE CIRCUIT



Note : The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a  $2.5 k\Omega$  (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.


#### Fig. 7 WIRING CONNECTION OF SHUNT RESISTOR





TRANSFER-MOLD TYPE INSULATED TYPE

#### Fig. 8 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE



Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm)

- 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
- 3: Fo output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 10kΩ resistor.
- 4: Fo output pulse width is determined by the external capacitor between CFO and VNC terminals (CFO). (Example : CFO = 22 nF  $\rightarrow$  tFO = 1.8 ms (typ.))
- 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.
- 6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
- **7**: Please set the C5R1 time constant in the range  $1.5 \sim 2\mu s$ .
- 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
- **9**: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
- 10: The terminal VNO should be connected with the terminal N outside.
- 11: To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) nearby each pair of supply terminals.

