LCD and Camera EMI Filter Array with ESD Protection

Functional Description

The CM1442-06LP is part of a family of pi-style EMI filter arrays with ESD protection, which integrates six filters (C-R-C) in a Chip Scale Package (CSP) form factor with 0.40 mm pitch. The CM1442-06LP (low profile) has component values of 15 pF – 100 Ω – 15 pF per channel. The CM1442-06LP has a cut-off frequency of 120 MHz and can be used in applications where the data rates are as high as 48 Mbps. The parts include avalanche-type ESD diodes on every pin, which provide a very high level of protection for sensitive electronic components against potential electrostatic discharge (ESD). The ESD protection diodes safely dissipate ESD strikes of ±15 kV, well beyond the maximum requirement of the IEC61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than ±30 kV.

The CM1442-06LP is available in a space-saving, low-profile CSP with RoHS-compliant, lead-free finishing. It is manufactured with a 0.40 mm pitch and 0.15 mm CSP solder ball to provide up to 28% board space saving versus competing CSP devices with 0.50 mm pitch and 0.30 mm CSP solder ball.

Features

- Six Channels of EMI Filtering with Integrated ESD Protection
- 0.4 mm Pitch, 15–Bump, 2.360 mm x 1.053 mm Footprint Chip Scale Package (CSP)
- Pi-Style EMI Filters in a Capacitor-Resistor-Capacitor (C-R-C) Network
- ±15 kV ESD Protection on Each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- ±30 kV ESD Protection on Each Channel (HBM)
- Greater than 30 dB Attenuation (Typical) at 1 GHz
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD and Camera Data Lines in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers

w.BDTIC.com/C

- Wireless Handsets
- Handheld PCs/PDAs
- LCD and Camera Modules

ON Semiconductor®

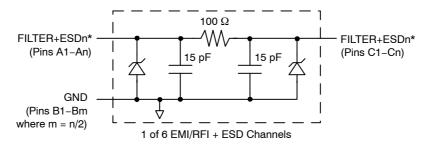
http://onsemi.com

WLCSP15 LP SUFFIX CASE 567CM

MARKING DIAGRAM

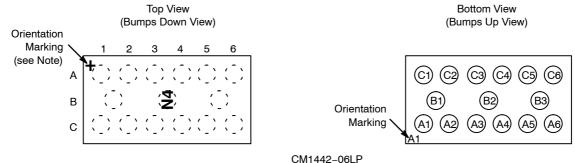
15-Bump CSP Package

N4 = CM1442-06LP YYWW = Datecode


ORDERING INFORMATION

Device	Package	Shipping [†]
CM1442-06LP	CSP-15 (Pb-Free)	3500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


© Semiconductor Components Ind March, 2011 – Rev. 4 Publication Order Number: CM1442-06LP/D

BLOCK DIAGRAM

*See Package/Pinout Diagrams for expanded pin information.

PACKAGE / PINOUT DIAGRAMS

CM1442–06LP 15–Bump CSP Package

Table 1. PIN DESCRIPTIONS

Pins	Name	Description	Pins	Name	Description
A1	FILTER1	Filter + ESD Channel 1	C1	FILTER1	Filter + ESD Channel 1
A2	FILTER2	Filter + ESD Channel 2	C2	FILTER2	Filter + ESD Channel 2
A3	FILTER3	Filter + ESD Channel 3	C3	FILTER3	Filter + ESD Channel 3
A4	FILTER4	Filter + ESD Channel 4	C4	FILTER4	Filter + ESD Channel 4
A5	FILTER5	Filter + ESD Channel 5	C5	FILTER5	Filter + ESD Channel 5
A6	FILTER6	Filter + ESD Channel 6	C6	FILTER6	Filter + ESD Channel 6
B1-B3	GND	Device Ground			

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

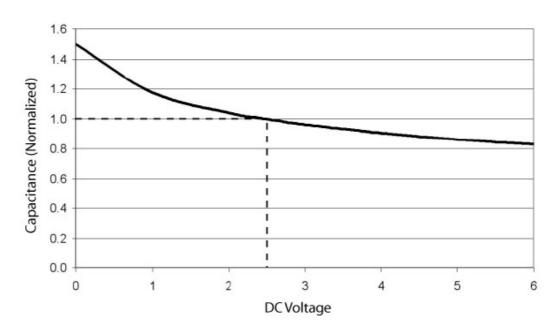
Parameter	Rating	Units
Storage Temperature Range	–65 to +150	°C
DC Power per Resistor	100	mW
DC Package Power Rating	500	mW

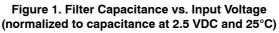
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

www.BDhtp://nsemil.com.com/ON/

Table 3. STANDARD OPERATING CONDITIONS

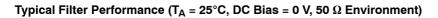
Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C


Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
R	Resistance		80	100	120	Ω
C _{TOTAL}	Total Channel Capacitance	At 2.5 VDC Reverse Bias, 1 MHz, 30 mVAC	24	30	36	pF
С	Capacitance C1	At 2.5 VDC Reverse Bias, 1 MHz, 30 mVAC	12	15	18	pF
V _{DIODE}	Standoff Voltage	I _{DIODE} = 10 μA		6.0		V
I _{LEAK}	Diode Leakage Current (reverse bias)	V _{DIODE} = +3.3 V		0.1	1	μA
V _{SIG}	Signal Clamp Voltage Positive Clamp Negative Clamp	$I_{LOAD} = 10 \text{ mA}$ $I_{LOAD} = -10 \text{ mA}$	5.6 -1.5	6.8 -0.8	9.0 -0.4	V
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	(Notes 2 and 3)	±30 ±15			kV
R _{DYN}	Dynamic Resistance Positive Negative			2.3 0.9		Ω
f _C	Cut–off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω	R = 100 Ω, C = 15 pF		115		MHz

1. $T_A = 25^{\circ}C$ unless otherwise specified. 2. ESD applied to input and output pins with respect to GND, one at a time.

3. Unused pins are left open.


PERFORMANCE INFORMATION

nt p://cnsemi.com www.B

PERFORMANCE INFORMATION (Cont'd)

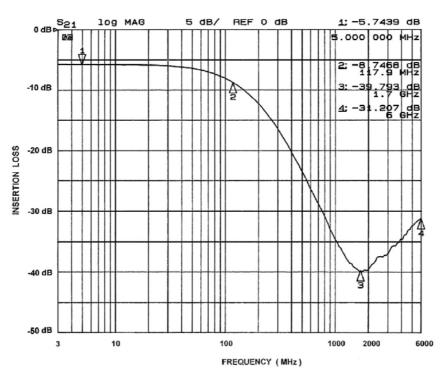


Figure 2. Insertion Loss vs. Frequency (A1-C1 to GND B1)

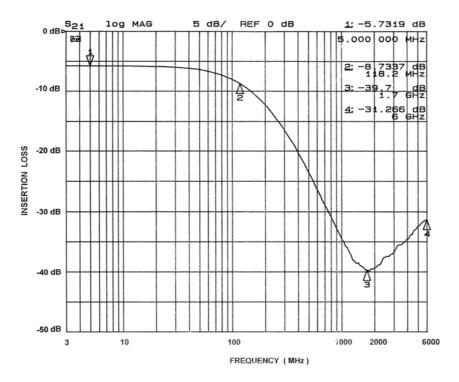
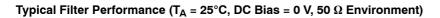
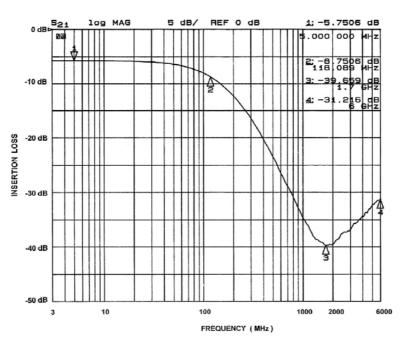
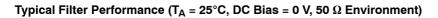



Figure 3. Insertion Loss vs. Frequency (A2-C2 to GND B1)

www.BDhtp://html:comcom/ON/

PERFORMANCE INFORMATION (Cont'd)




Figure 4. Insertion Loss vs. Frequency (A3-C3 to GND B2)

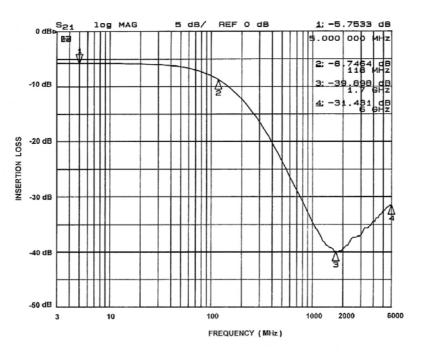
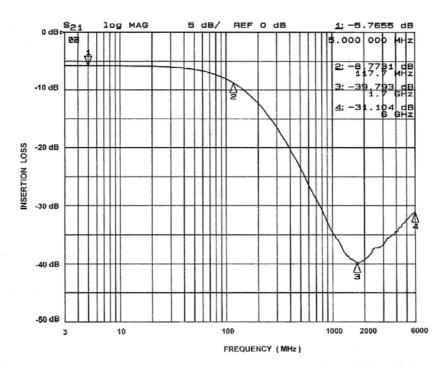
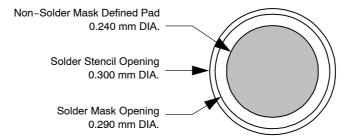


Figure 5. Insertion Loss vs. Frequency (A4-C4 to GND B2)

www.BDhtp://html:com/ON/

PERFORMANCE INFORMATION (Cont'd)




Figure 7. Insertion Loss vs. Frequency (A6-C6 to GND B3)

www.BDhtp://htemi.com/ON/

APPLICATION INFORMATION

Table 5. PRINTED CIRCUIT BOARD RECOMMENDATIONS

Parameter	Value		
Pad Size on PCB	0.240 mm		
Pad Shape	Round		
Pad Definition	Non-Solder Mask defined pads		
Solder Mask Opening	0.290 mm Round		
Solder Stencil Thickness	0.125 – 0.150 mm		
Solder Stencil Aperture Opening (laser cut, 5% tapered walls)	0.300 mm Round		
Solder Flux Ratio	50/50 by volume		
Solder Paste Type	No Clean		
Pad Protective Finish	OSP (Entek Cu Plus 106A)		
Tolerance – Edge To Corner Ball	±50 μm		
Solder Ball Side Coplanarity	±20 μm		
Maximum Dwell Time Above Liquidous	60 seconds		
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	260°C		

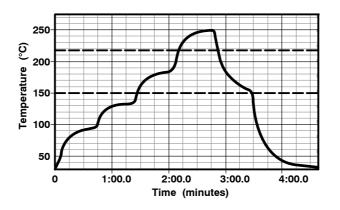
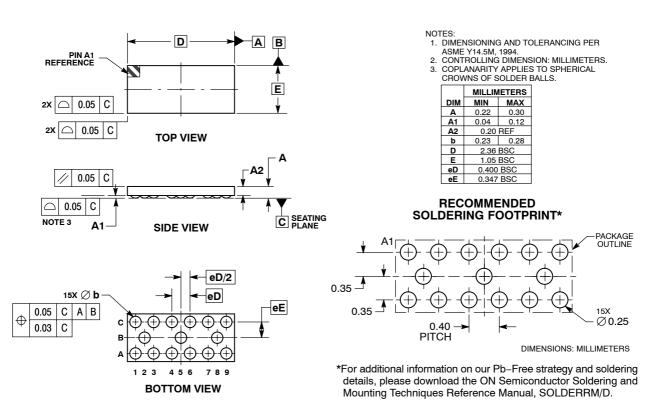



Figure 9. Lead-free (SnAgCu) Solder Ball Reflow Profile

www.BDhtp://themi.comcom/ON/

PACKAGE DIMENSIONS

WLCSP15, 2.36x1.05 CASE 567CM-01 ISSUE O

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patent is SCILLC was negligent regarding the design or manufacture of the part. SCILC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

CM1442-06LP/D