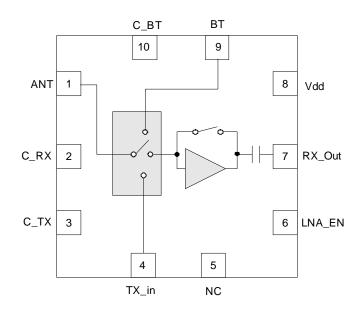
RF5521

3.3V, SWITCH AND LNA FRONT END MODULE

Package Style: QFN, 10-pin, 1.75mmx1.75mmx0.5mm



Features

- Single Supply Voltage 3.0V to 4.5V
- Integrated SP3T Switch and LNA with Bypass
- Typical gain is 12dB and 2.0dB NF in RX Mode Pin-to-Pin

Applications

- IEEE802.11b/g/n WiFi Applications
- Portable Battery-Powered Equipment
- WiFi/Bluetooth[®] Combination Devices

Functional Block Diagram

Product Description

The RF5521 is designed specifically for high-performance WiFi applications in the 2.4GHz to 2.5GHz ISM band, including Personal Media Players (PMPs), digital cameras, and WiFi enabled handsets.

The RF5521 integrates the LNA with bypass and an SP3T switch of a Front-End solution for WiFi and Bluetooth[®] combination systems. The integrated input and output match reduces the number of external components, keeping cost down and utilizing minimum layout area for implementation. The RF5521 is provided in an ultra small 1.75 mmx1.75 mmx0.5 mm 10-pin QFN package. This LNA+Switch frontend solution meets or exceeds the specification requirements of IEEE 802.11 b/g/n WiFi RF systems.

Ordering Information

RF5521	Standard 25 piece bag
RF5521SR	Standard 100 piece reel
RF5521TR7	Standard 2500 piece reel
RF5521PCK-410	Fully Assembled Evaluation Board

(+1) 326-678-5570 or sales-supported

Optimum Technology Matching® Applied

md c

🗌 GaAs HBT	□ SiGe BiCMOS	🗹 GaAs pHEMT	🗌 GaN HEMT
GaAs MESFET	🗌 Si BiCMOS	🗌 Si CMOS	RF MEMS
InGaP HBT	SiGe HBT	🗌 Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity[™], PowerStar®, POLARIS[™] TOTAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

support, contact RF

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage	5.5	V
Stability, Output VSWR	5:1	
Antenna Port Nominal Impedance	50	Ω
Full Spec Compliant Temperature Range	-10 to +75	°C
Storage Temperature	-40 to +150	°C
Moisture Sensitivity Level	MSL2	
LNA Input Power (no damage)	5	dBm
ESD, Human Body Model (HBM)	500	V
ESD, Charge Device Model (CDM)	650	V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Devenuetev	Specification		11	Oanditian		
Parameter	Min.	Min. Typ.		Unit	Condition	
Compliance					IEEE802.11b/g/n, FCC CFR 15.247,.205,.209, EN & JDEC. VDD=3.3V, LNA EN=2.85V, Temp=+25°C, Freq=2.4GHz to 2.5GHz, unless noted otherwise.	
Operating Frequency	2.4		2.5	GHz		
LNA Voltage Supply (V _{DD})	3.0	3.3	4.5	V		
LNA Enable Voltage (LNA_En)	2.70	2.85	4.5	V	LNA Enabled	
	0		0.2	V	LNA Off.	
Switch Control Voltage "HIGH"	2.4		4.5	V		
Switch Control Voltage "LOW"			0.2	V		
LNA Bypass (LNA_EN)	2.7		4.5	V	LNA Bypass Disabled	
			0.2	V	LNA Bypass Enabled	
LNA Current						
LNA V _{DD}		7	14	mA	LNA in "On" state.	
			5	μΑ	LNA in "Off" state.	
LNA Enable			1	mA	LNA Enabled.	
LNA Bypass			1	mA	LNA Bypass Mode.	
Gain, WiFi Rx	9	12	14	dB	WiFi ANT-RX. (LNA_EN High)	
Bypass Mode	-5.0	-4.0	-3.0	dB	WiFi ANT-RX, (LNA_EN Low)	
Noise Figure					VDD>3.0V, including switch	
WiFi Rx		2.0	3.0	dB	WiFi RX Mode.	
Bypass Mode		4.0	5.0	dB	LNA Bypass.	
Passband Ripple	-0.2		+0.2	dB	WiFi RX Mode.	
	-0.2		+0.2	dB	WiFi ANT-BT	
Output Return Loss			-9.6	dB		
WiFi Input/Output Impedance		50		Ω	No external matching.	

Deveneter	Specification		11	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
BT and TX Switch						
Parameters						
Frequency	2.4		2.5	GHz		
TX Insertion Loss		0.6	1.0	dB	ANT-BT, TX-ANT	
		3.8	4.0	dB	C_BT (ANT-BT) and C_RX (ANT-RX) On simultaneously.	
BT Insertion Loss		0.9	1.2	dB	ANT-BT	
		3.8	4.0	dB	C_BT (ANT-BT) and C_RX (ANT-RX) On simultaneously.	
Passband Ripple	-0.2		+0.2	dB		
Input P1dB		28		dBm	Switch ports only.	
Input Return Loss		10		dB		
Output Return Loss		10		dB		
Current Consumption			10	μΑ	Switch Leakage Current	
Port Impedance					All ports.	
Input		50		Ω	Receive	
Output		50		Ω	Transmit	
Isolation		20		dB	Switch isolation port to port.	
Switch Control Voltage						
High	2.5		4.5	V	C_TX, C_RX, C_BT	
Low			0.2	V		
Switch Control Current			20	μΑ	Per control line.	
Switch Control Speed		50		nsec		

Note 1: The switch must operate with gated bias voltage input at 1% to 99% duty cycle.

Note 2: No external matching components.

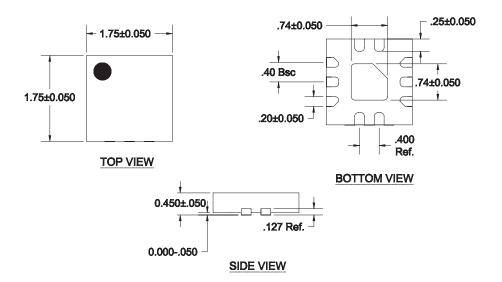
Note 3: Values to be agreed to upon characterization data review. current, gain, return loss, detector sensitivity, and output power.

Note 4: The FEM can be placed in receive WiFi and Bluetooth modes simulataneously with increased insertion loss.

Switch Control Logic

	Switch Controls				
MODE	C BT	C RX	СТХ	LNA EN	
WiFi Receive	LOW	HIGH	LOW	HIGH	
WiFi Bypass	LOW	HIGH	LOW	LOW	
Bluetooth®	HIGH	LOW	LOW	LOW	
WiFi Transmit	LOW	LOW	HIGH	LOW	
Simultaneous WiFi/BT Receive	HIGH	HiGH	LOW	HIGH	

*The FEM can be placed in receive WiFi and Bluetooth $^{\rm I\!B}$ modes simultaneously with increased insertion loss.

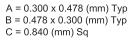


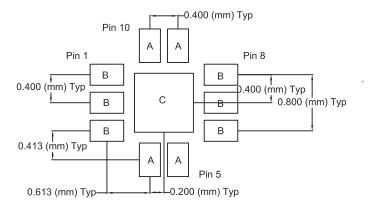
RFMD	- >))))
rfmd.com	

Pin	Function	Description		
1	ANT	This is a common port (antenna). It is matched at 50 Ω .		
2	C_RX	Receive mode control voltage. See switch truth table for proper level.		
3	C_TX	Transmit mode control voltage. See switch truth table for proper level.		
4	TX IN	RF input for the 802.11 b/g PA. Input is matched to 50Ω .		
5	NC	No connect pin.		
6	LNA_EN	This pin enables the LNA. A logic HIGH enables the LNA.		
7	RX_OUT	Receive port for 802.11 b/g band. Internally matched to 50 Ω . DC-block provided internally.		
8	VDD	Supply voltage to the LNA.		
9	BT	RF bi-directional prots for Bluetooth TM . Input is matched to 50Ω .		
10	C_BT	Bluetooth™ mode control voltage. See switch truth table for proper level.		

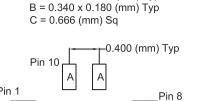
Package Drawing

Top View Note: Pads are NiPdAu plated.

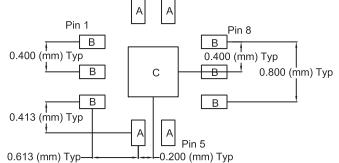



PCB Metal Land Pattern

B = 0.378 x 0.200 (mm) Typ C = 0.740 (mm) Sq-0.400 (mm) Typ Pin 10 A A Pin 8 Pin 1 В В 0.400 (mm) Typ 0.400 (mm) Typ С 0.800 (mm) Typ В ŧ в В В 0.413 (mm) Typ А А Pin 5 0.613 (mm) Typ--0.200 (mm) Typ

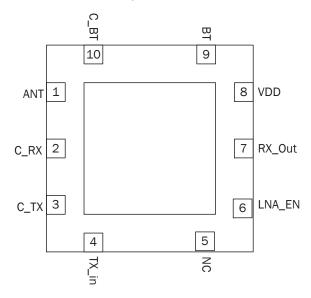

A = 0.200x 0.378 (mm) Typ

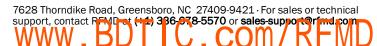
PCB Solder Mask Pattern



PCB Stencil Pattern

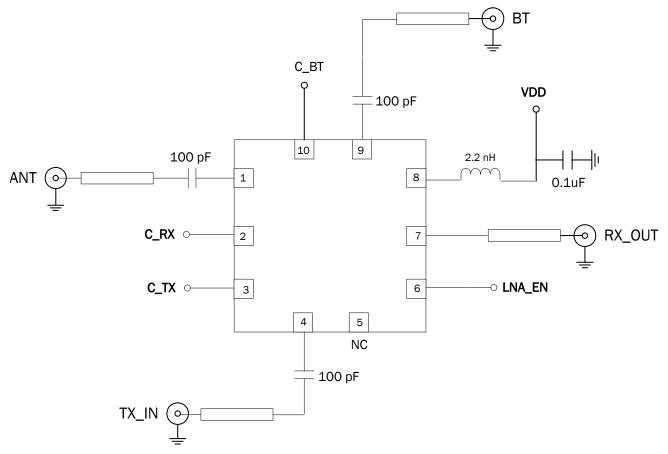
A = 0.180 x 0.340 (mm) Typ





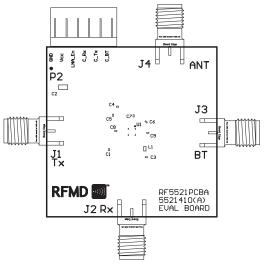
Pin Out

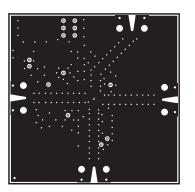
Top View



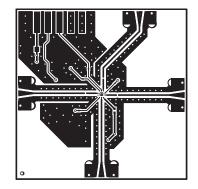
RF5521

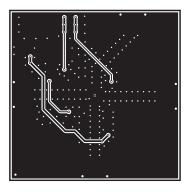
Evaluation Board Schematic



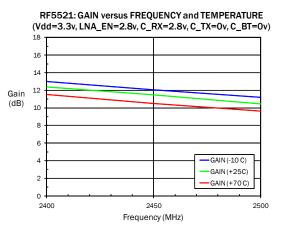


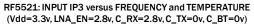
Evaluation Board Layout

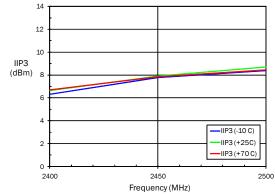

Board size: 1.5" x 1.5", Board thickness: 0.032", Board Material FR-4, Multi-Layer

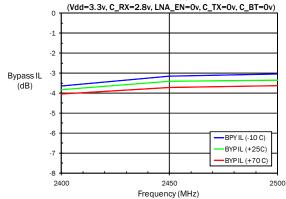

Top Silk

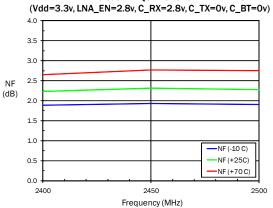
Mid-1

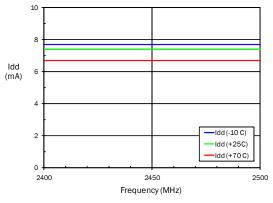

Top Signal

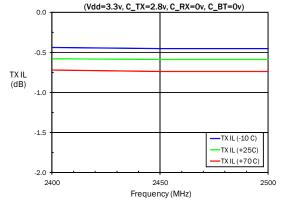



Bottom

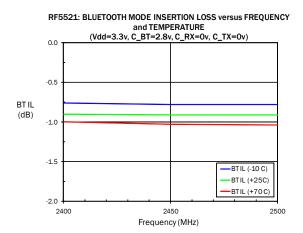


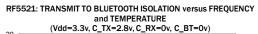


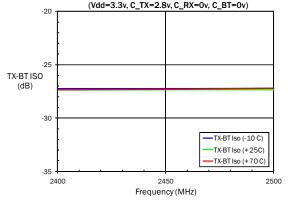


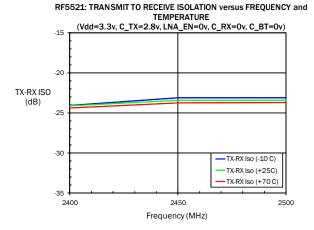


RF5521: CURRENT versus FREQUENCY and TEMPERATURE (Vdd=3.3v, LNA_EN=2.8v, C_RX=2.8v, C_TX=0v, C_BT=0v)


RF5521: TRANSMIT MODE INSERTION LOSS versus FREQUENCY and TEMPERATURE




RF5521: NF versus FREQUENCY and TEMPERATURE



10 of 10