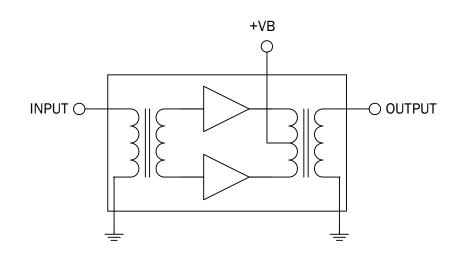


RFPD2660

40MHz TO 1003MHz 23dB POWER DOUBLER HYBRID

Package: SOT-115J



Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under all Terminations
- High Output Capability
- 23.0dB Min. Gain at 1003MHz
- 440mA Max. at 24V_{DC}

Applications

 40MHz to 1003MHz CATV Amplifier Systems

Functional Block Diagram

Product Description

The RFPD2660 is a hybrid power doubler amplifier module. The part employs GaAs MESFET, GaAs pHEMT and GaN HEMT die, has high output capability, and is operated from 40MHz to 1003MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Optimum Technology Matching® Applied				
□ GaAs HBT	☐ SiGe BiCMOS	▼ GaAs pHEMT	☑ GaN HEMT	
▼ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT	
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT		

RFPD2660

Absolute Maximum Ratings

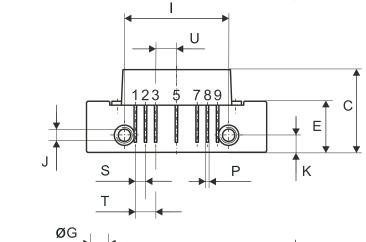
Parameter	Rating	Unit
RF Input Voltage (single tone)	70	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

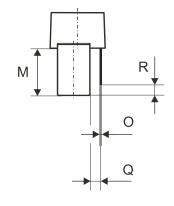
Caution! ESD sensitive device.

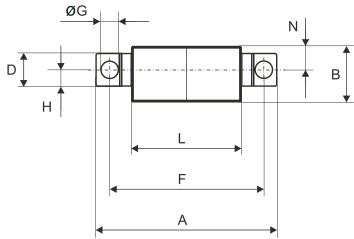
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2002/95/FC


Parameter	Specification		Unit	Condition	
	Min.	Тур.	Max.	Unit	Condition
Overall		_		_	$V_B = 24V; T_{MB} = 30 ^{\circ}C; Z_S = Z_L = 75\Omega$
Power Gain	21.5	22.0	22.5	dB	f = 50MHz
	22.5	23.0	24.0	dB	f = 1003MHz
Slope ^[1]	0.5	1.0	2.0	dB	f = 40MHz to 1003MHz
Flatness of Frequency Response			0.8	dB	f = 40MHz to 1003MHz
Input Return Loss	-20			dB	f = 40MHz to 320MHz
	-18			dB	f = 320MHz to 640MHz
	-17			dB	f = 640MHz to 870MHz
	-16			dB	f = 870MHz to 1003MHz
Output Return Loss	-20			dB	f = 40MHz to 320MHz
	-19			dB	f = 320MHz to 640MHz
	-18			dB	f = 640MHz to 870MHz
	-17			dB	f = 870MHz to 1003MHz
Noise Figure		5.0	5.5	dB	f = 50MHz to 1003MHz
Total Current Consumption (DC)		420.0	440.0	mA	
Distortion data 40MHz to 550MHz					$V_B = 24V; T_{MB} = 30 ^{\circ}C; Z_S = Z_L = 75\Omega$
СТВ		-75	-70	dBc	V_0 = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset) ^[2]
XMOD		-70	-65	dBc	V_0 = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset) ^[2]
CSO		-70	-65	dBc	V_0 = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset) ^[2]
CIN	60	66		dB	V_0 = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset) ^[2]


^[1] The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.


^{[2] 79} analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +43dBmV to +50dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier. Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA. Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA. Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the car-rier being tested. Carrier to Intermodulation Noise (CIN) - The CIN parameter is defined by ANSI/SCTE 17 (Test procedure for carrier to noise).

Package Drawing

Pinning:

0 5 10mm

INPUT	1	
GND	2	
GND	3	
	4	
+VB	5	
	6	
GND	7	
GND	8	
OUTPUT	9	

Notes:

All Dimensions in mm:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nominal	min	max
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	44,6 ^{± 0,2}	44,4	44,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	13,6 ^{± 0,2}	13,4	13,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	20,4 ^{± 0,5}	19,9	20,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	8 ^{± 0,15}	7,85	8,15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	12,6 ^{± 0,15}	12,45	12,75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F		37,9	38,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	4 +0,2 / -0,05	3,95	4,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	4 ^{± 0,2}	3,8	4,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1	25,4 ^{± 0,2}	25,2	25,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J	UNC 6-32	-	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K	4,2 ^{± 0,2}	4,0	4,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	27,2 ^{± 0,2}	27,0	27,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	М	11,6 ^{± 0,5}	11,1	12,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N	5,8 ^{± 0,4}	5,4	6,2
Q 2,54 ± 0.3 2,24 2,84 R 2,54 ± 0.5 2,04 3,04 S 2,54 ± 0.25 2,29 2,79 T 5,08 ± 0.25 4,83 5,33	0	0,25 ^{± 0,02}	0,23	0,27
R 2,54 ± 0.5 2,04 3,04 S 2,54 ± 0.25 2,29 2,79 T 5,08 ± 0.25 4,83 5,33	Р	0,45 ^{± 0,03}	0,42	0,48
R 2,54 ± 0.5 2,04 3,04 S 2,54 ± 0.25 2,29 2,79 T 5,08 ± 0.25 4,83 5,33	Q	2,54 ^{± 0,3}	2,24	2,84
T 5,08 ± 0,25 4,83 5,33	R		2,04	3,04
	S	2,54 ^{± 0,25}	2,29	2,79
	Т	5,08 ^{± 0,25}	4,83	5,33
	U	5,08 ^{± 0,25}	4,83	5,33