256Mb (16M x 16 bit) UtRAM

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.

ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

- 1. For updates or additional information about Samsung products, contact your nearest Samsung office.
- 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

^{*} Samsung Electronics reserves the right to change products or specification without notice.

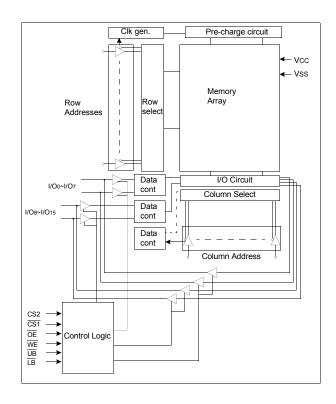
Document Title

16Mx16 bit Page Mode Uni-Transistor Random Access Memory Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial - Design target	December 8, 2005	Preliminary
0.1	Revised - Changed AC parameter $tPC: 25ns \rightarrow 20ns$ $tOE: 35ns \rightarrow 20ns$ $tBA: 35ns \rightarrow 20ns$ $tLZ: 5ns \rightarrow 10ns$ $tCHZ: 12ns \rightarrow 10ns$ $tBHZ: 12ns \rightarrow 10ns$ $tDW: 30ns \rightarrow 20ns$ - Updated DC parameter $ICC2: 35mA$ $ICC2P: 20mA$	February 3, 2006	Preliminary
1.0	Finalized	March 15, 2006	Final
1.1	Revised - Changed AC prameter (tBA: 20ns -> 70ns) - errata corrected on page5 (4us -> 1.2us)	May 17, 2006	Final
2.0	Revised - Corrected tBC (1.2us -> 1.7us)	May 29, 2006	Final

Table of Contents FEATURES & FUNCTION BLOCK DIAGRAM......1 PRODUCT FAMILY......1 TIMING WAVEFORM OF POWER UP(2) (CS2 controlled)2 AC OPERATING CONDITIONS4 TIMING WAVEFORMS.......5 TIMING WAVEFORM OF READ CYCLE(1)......5 TIMING WAVEFORM OF PAGE CYCLE (READ ONLY).....5 TIMING WAVEFORM OF WRITE CYCLE(1)6 TIMING WAVEFORM OF WRITE CYCLE(3)......7

16M x 16 bit Page Mode Uni-Transistor CMOS RAM


GENERAL DESCRIPTION

The K1S5616BCM is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports 4 page read operation and Industrial temperature range. The device supports dual chip selection for user interface. The device also supports internal Temperature Compensated Self Refresh mode for the standby power saving at room temperature range.

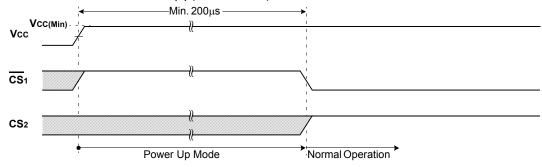
FEATURES & FUNCTION BLOCK DIAGRAM

Process technology: CMOS
Organization: 16M x 16 bit
Power supply voltage: 1.7V~1.95V

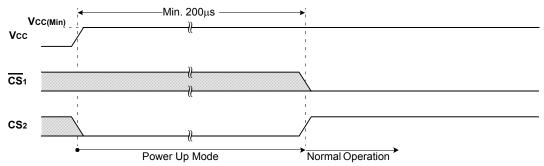
• Internal TCSR

PRODUCT FAMILY

				Power Di		
Product Family	Operating Temp.	Vcc Range	Speed (trc)	Standby (Isв1, Max.)	Operating (Icc2P, Max.)	PKG Type
K1S5616BCM-I	Industrial(-25~85°C)	1.7V~1.95V	70ns	350μA < 85°C 200μA < 40°C	20mA	TBD



POWER UP SEQUENCE


During the Power Up mode, the standby current can not be guaranteed. To get the stable standby current level, at least one cycle of active operation should be implemented regardless of wait time duration. To get the appropriate device operation, be sure to keep the following power up sequence.

- 1. Apply power.
- 2. Maintain stable power(Vcc min.=1.7V) for a minimum 200 μ s with \overline{CS} 1=high.or CS2=low.

TIMING WAVEFORM OF POWER UP(1) (CS1 controlled)

TIMING WAVEFORM OF POWER UP(2) (CS2 controlled)

FUNCTIONAL DESCRIPTION

CS1	CS2	OE	WE	LB	UB	I/O1~8	I/O9~16	Mode	Power
Н	X ¹⁾	High-Z	High-Z	Deselected	Standby				
X ¹⁾	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means "Don't care". X should be low or high state.

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to VCCQ+0.3V	V
Power supply voltage relative to Vss	Vcc, Vccq	-0.2 to 2.5V	V
Power Dissipation	PD	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-25 to 85	°C

¹⁾ Stresses greater than "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Item	Symbol	Min	Тур	Max	Unit
Power supply voltage(Core)	Vcc	1.7	1.8	1.95	V
Power supply voltage(I/O)	Vccq	1.7	1.8	1.95	V
Ground	Vss, VssQ	0	0	0	V
Input high voltage	VIH	0.8 x VCCQ	-	VCCQ+0.2 ²⁾	٧
Input low voltage	VIL	-0.23)	-	0.4	V

^{1.} Ta=-25 to 85°C, otherwise specified.

CAPACITANCE (f=1MHz, Ta=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	Vin=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	8	pF

DC AND OPERATING CHARACTERISTICS

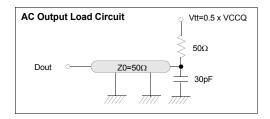
Item	Symbol	Test Conditions			Тур	Max	Unit
Input Leakage Current	ILI	VIN=Vss to VCCQ		-1	-	1	μΑ
Output Leakage Current	llo	CS=VIH, PS=VIH, OE=VIH or WE=VIL, VIO=VS	ss to Vccq	-1	-	1	μА
A O	ICC2	Cycle time=70ns, IIO=0mA ²⁾ , 100% duty, CS =VIL, F	cycle time=70ns, IIO=0mA ²⁾ , 100% duty, CS=VIL, PS=VIH, VIN=VIL or VIH		-	35	mA
Average Operating Current(Async) ICC2		Cycle time=tRC+3tPC, IIO=0mA 2), 100% duty, $\overline{\text{CS}}$ =VIL, $\overline{\text{PS}}$ =VIH, VIN=VIL or VIH			-	20	mA
Output Low Voltage	Vol	IoL=0.1mA		-	-	0.2	٧
Output High Voltage	Vон	Ioн=-0.1mA		1.4	-	-	٧
Standby Current(CMOS)	ISB1 ¹⁾	CS≥VCCQ-0.2V, PS≥VCCQ-0.2V, Other inputs=Vss	< 40°C	-	-	200	μΑ
	ISB1 ¹⁾	or VCCQ	< 85°C	-	-	350	μΑ

^{1.} Internal TCSR (Temperature Compensated Self Refresh) is used to optimize Refresh cycle below 40°C.

^{2.} Overshoot: Vccq +1.0V in case of pulse width ≤20ns. Overshoot is sampled, not 100% tested.

^{3.} Undershoot: -1.0V in case of pulse width ≤20ns. Undershoot is sampled, not 100% tested.

^{2.} IIO=0mA; This parameter is specified with the outputs disabled to avoid external loading effects.


AC OPERATING CONDITIONS

TEST CONDITIONS

(Test Load and Test Input/Output Reference) Input pulse level: 0.2V to Vcc-0.2V Input rising and falling time: 3ns

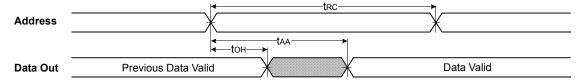
Input and output reference voltage: 0.5 x Vccq

Output load: CL=30pF Vcc:1.7V~1.95V TA: -25°C~85°C

AC CHARACTERISTICS

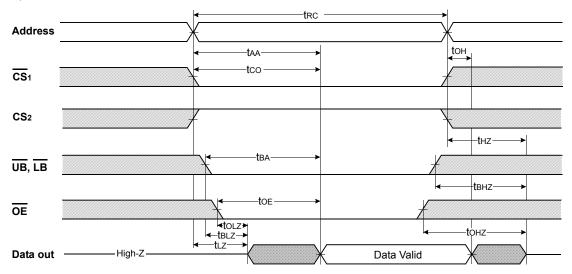
	Parameter List		Sp	peed	
	Parameter List	Symbol	Min	Max	Units
Common	CS High Pulse Width	tcshp(A)	10	-	ns
	Read Cycle Time	trc	70	-	ns
	Page Read Cycle Time	tpc	20	-	ns
	Address Access Time	taa	-	70	ns
	Page Access Time	tpa	-	20	ns
	Chip Select to Output	tco	-	70	ns
	Output Enable to Valid Output	toe	-	20	ns
Asynch.	UB, LB Access Time	tва	-	70	ns
Read	Chip Select to Low-Z Output	tLZ	10	-	ns
	UB, LB Enable to Low-Z Output	tBLZ	5	-	ns
	Output Enable to Low-Z Output	toLz	5	-	ns
	Chip Disable to High-Z Output	tcHZ	0	10	ns
	UB, LB Disable to High-Z Output	tвнz	0	10	ns
	Output Disable to High-Z Output	tонz	0	10	ns
	Output Hold	toн	5	-	ns
	Write Cycle Time	twc	70	-	ns
	Chip Select to End of Write	tcw	60	-	ns
	Address Set-up Time to Beginning of Write	tas	0	-	ns
	Address Valid to End of Write	taw	60	-	ns
Asynch.	UB, LB Valid to End of Write	tвw	60	-	ns
Write	Write Pulse Width	twp	55 ¹⁾	-	ns
	WE High Pulse Width	twhp	5	-	ns
	Write Recovery Time	twr	0	-	ns
	Data to Write Time Overlap	tow	20	-	ns
	Data Hold from Write Time	tDH	0		ns

^{1.} twp(min)=70ns for continuous write without CS toggling longer than 1.7us

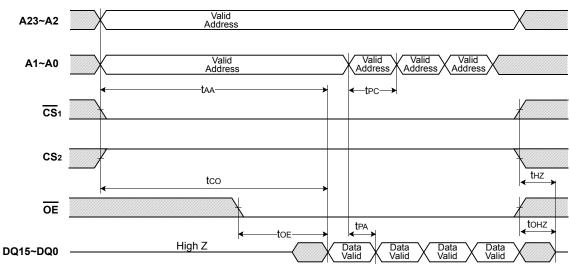

^{2.} The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ x 0.5

^{3.} The Low-Z timings measure a 100mV transition away from the High-Z level toward either VOH or VOL.

TIMING WAVEFORMS


TIMING WAVEFORM OF READ CYCLE(1)

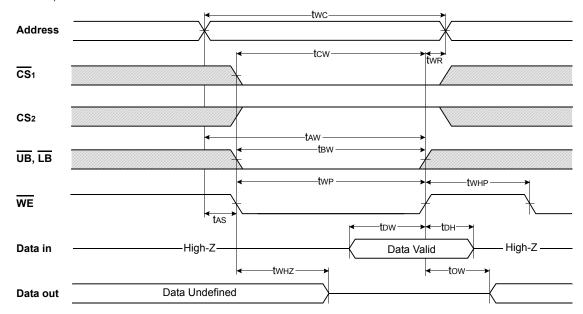
(Address Controlled, CS1=OE=VIL, CS2=WE=VIH, UB or/and LB=VIL)



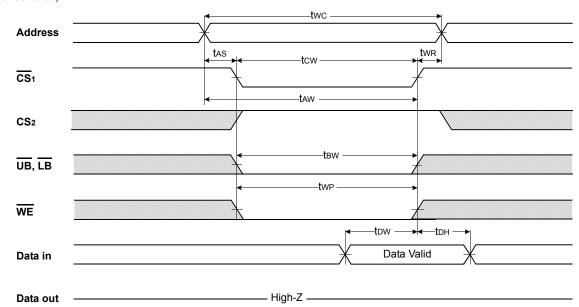
TIMING WAVEFORM OF READ CYCLE(2)

(WE=VIH)

TIMING WAVEFORM OF PAGE CYCLE (READ ONLY)


(READ CYCLE)

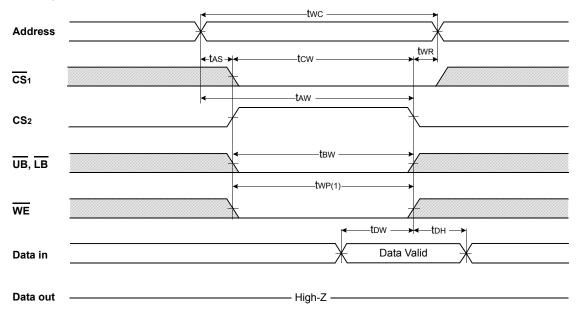
- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.
- 3. tOE(max) is met only when \overline{OE} becomes enabled after tAA(max).
- 4. If invalid address signals shorter than min. tRC are continuously repeated for over 1.7us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 1.7us.


TIMING WAVEFORM OF WRITE CYCLE(1)

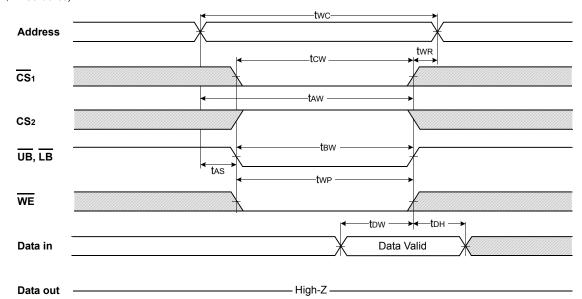
(WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2)

(CS1 Controlled)



- 1. A write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high or \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the CS going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn is applied in case a write ends with $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 5. In asynchronous write cycle, Clock and $\overline{\text{ADV}}$ signals are ignored.
- 6. Condition for continuous write operation over 50 times: tWP(min)=70ns


TIMING WAVEFORM OF WRITE CYCLE(3)

(CS2 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(4)

(UB, LB Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twp) of low $\overline{CS1}$ and low \overline{WE} . A write begins when $\overline{CS1}$ goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when $\overline{CS1}$ goes high and \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ 1 going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn is applied in case a write ends with $\overline{\text{CS}}$ 1 or $\overline{\text{WE}}$ going high.

