LM49120 Audio Sub-System with Mono Class AB Loudspeaker Amplifier

andStereo OCL/SE Headphone Amplifier

Literature Number: SNAS431B

July 15, 2008

540mW (typ)

35mW (typ)

National Semiconductor

LM49120 Boomer[®] Audio Power Amplifier Series Audio Sub-System with Mono Class AB Loudspeaker Amplifier and Stereo OCL/SE Headphone Amplifier

General Description

The LM49120 is a compact audio subsystem designed for portable handheld applications such as cellular phones. The LM49120 combines a mono 1.3W speaker amplifier, stereo 85mW/ch output capacitorless headphone amplifier, 32 step volume control, and an input mixer/multiplexer into a single 16–bump micro SMD package.

The LM49120 has three input channels: two single-ended stereo inputs and a differential mono input. Each input features a 32-step digital volume control. The headphone output stage features an 8 step (-18dB – 0dB) attenuator, while the speaker output stage has two selectable (0dB/+6dB) gain settings. The digital volume control and mode control are programmed through a two-wire I²C compatible interface.

Key Specifications

Output power at V_{DD} = 5V:

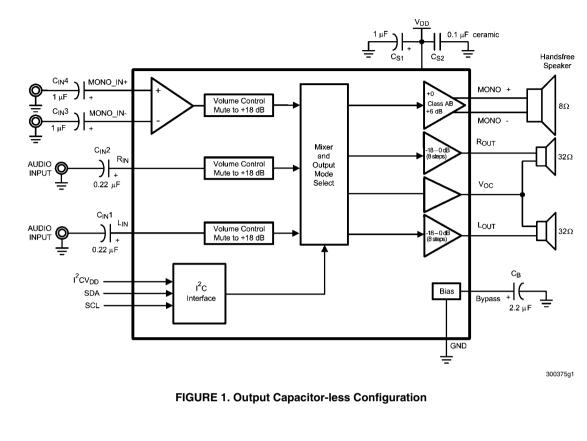
Speaker: R _L = 8Ω BTL, THD+N ≤ 1%	1.3W (typ)
Headphone: R _L = 32Ω, SE, THD+N ≤ 1%	85mW (typ)
Output power at V _{DD} = 3.6V:	
Speaker: R _L = 8Ω, BTL, THD+N ≤ 1%	632mW (typ)
Output power at V _{DD} = 3.3V:	

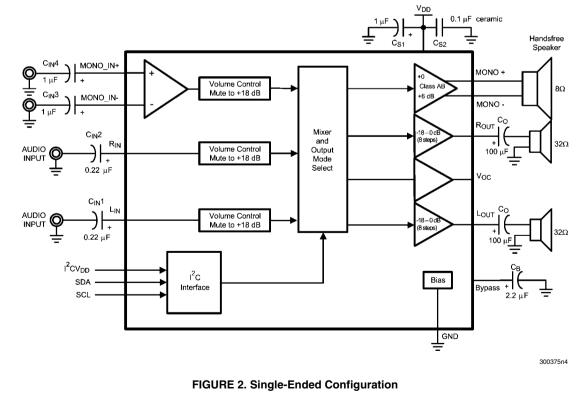
Speaker:

 $R_L = 8\Omega$, BTL, THD+N $\leq 1\%$ Headphone:

 $R_L = 32\Omega$, OCL/SE, THD+N $\leq 1\%$

Features


- RF immunity
- Selectable OCL/SE headphone drivers
- 32 Step volume control
- Click and Pop suppression
- Independent speaker and headphone gain settings
- Minimum external components
- Thermal over load protection
- Micro-power shutdown
- Space saving 16-bump mciro SMD package
- Thermal shutdown protection
- Micro-power shutdown
- I²C Control Interface

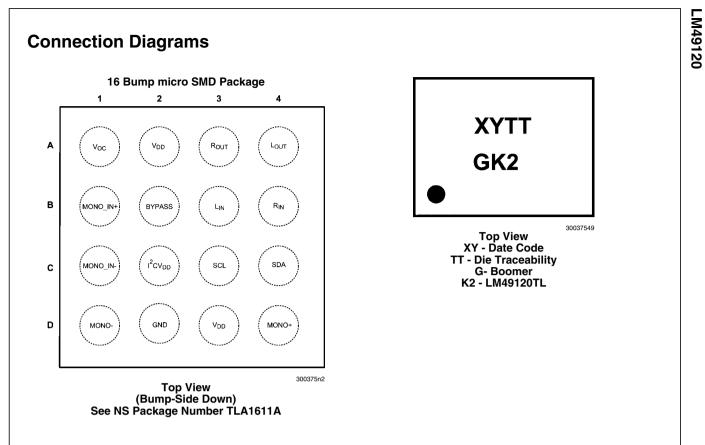

Applications

- Mobile Phones
- PDAs
- Portable Electronics

© 2008 National Semiconductor Corporation

Typical Application

DT]


B

[C.com/

Note: The 6dB speaker gain applies only to the differential input path.

www.

LM49120

Ordering Information

Order Number	Package	Package DWG #	Transport Media	MSL Level	Green Status
LM49120TL	16 Bump micro SMD	TLA1611A	250 units on tape and reel	1	NOPB
LM49120TLX	16 Bump micro SMD	TLA1611A	3000 units on tape and reel	1	NOPB

Pin Descriptions

Bump	Name	Description	
A1	V _{OC}	Headphone Center Amplifier Output	
A2	V _{DD}	Headphone Power Supply	
A3	R _{OUT}	Right Channel Headphone Output	
A4	L _{OUT}	Left Channel Headphone Output	
B1	MONO_IN+	Mono Non-inverting Input	
B2	BYPASS	Bias Bypass	
B3	L _{IN}	Left Channel Input	
B4	R _{IN}	Right Channel Input	
C1	MONO_IN-	Mono Inverting Input	
C2	I ² CV _{DD}	I ² C Interface Power Supply	
C3	SCL	I ² C Clock Input	
C4	SDA	I ² C Data Input	
D1	MONO-	Loudspeaker Inverting Output	
D2	GND	Ground	
D3	V _{DD}	Power Supply	
D4	MONO+	Loudspeaker Non-inverting Output	

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (Note 1)	6.0V
Storage Temperature	–65°C to +150°C
Input Voltage	–0.3 to V _{DD} +0.3
Power Dissipation (Note 3)	Internally Limited
ESD Rating (Note 4)	2000V
ESD Rating (Note 5)	200V
Junction Temperature	150°C

Solder Information	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C
Thermal Resistance	
θ _{JA} (typ) - TLA	62.3°C/W

Operating Ratings

Temperature Range	–40°C to 85°C
Supply Voltage (V _{DD})	$2.7V \le V_{DD} \le 5.5V$
Supply Voltage (I ² CV _{DD})	$1.7 \text{V} \le \text{I}^2 \text{CV}_{\text{DD}} \le 5.5 \text{V}$

Electrical Characteristics 3.3V (Notes 1, 2)

The following specifications apply for $V_{DD} = 3.3V$, $T_A = 25^{\circ}C$, all volume controls set to 0dB, unless otherwise specified.

			LM49120				
Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limits)		
		V _{IN} = 0, No Load					
		Output mode 5, 6, 7, 9, 10, 11, 13, 14, 15 OCL Headphone	6.2	8.0	mA (max)		
		Output mode 5, 6, 7, 9, 10, 11, 13, 14, 15 SE Headphone	5.5		mA		
DD	Supply Current	Output mode 1, 2, 3 OCL Headphone	4.1	5.3	mA (max)		
	Output mode 1, 2, 3 SE Headphone	5.5		mA			
	Output mode 4, 8, 12 OCL Headphone	3.7	4.7	mA (max)			
		Output mode 4, 8, 12 SE Headphone	3.0		mA		
SD	Shutdown Current	Shutdown Mode 0	0.01	1	μA		
		V _{IN} = 0V, Output Mode 10, LS output	10		mV		
V _{os}	Output Offset Voltage	V _{IN} = 0V, Output Mode 10, HP output, (OCL), 0dB (HP Output Gain)	1.5	5	mV (max)		
D	Output Down	LS_{OUT} ; $R_L = 8\Omega$ THD+N = 1%; f = 1kHz, BTL, Mode 1	540	500	mW (min)		
Po	Output Power	L_{OUT} and R_{OUT} ; R_L = 32 Ω THD+N = 1%; f = 1kHz, OCL, Mode 8	35	30	mW (min)		
THD+N Total Harmonic Distortion + Noi		MONO _{OUT} f = 1kHz P _{OUT} = 250mW; R _L = 8Ω, BTL, Mode 1	0.05		%		
	Total Harmonic Distortion + Noise	$P_{OUT} = 230$ MW, $R_L = 322$, BTL, Mode T L_{OUT} and R_{OUT} , f = 1kHz $P_{OUT} = 12$ mW; $R_L = 32\Omega$, SE, Mode 8	0.015		%		
		L_{OUT} and R_{OUT} , f = 1kHz P _{OUT} = 12mW; R _L = 32 Ω , OCL, Mode 8	0.015		%		

			LM4	9120	Units		
Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	(Limits)		
		A-weighted, inputs terminated to GND, Output referred	<u> </u>				
		Speaker Amplifier; Mode 1	15		μV		
		Speaker Amplifier; Mode 2	24		μV		
		Speaker Amplifier; Mode 3	29		μV		
<u>_</u>	Output Naisa	Headphone Amplifier; SE, Mode 4	8		μV μV		
e _{OUT}	Output Noise	Headphone Amplifier; SE, Mode 8	8		μV		
		Headphone Amplifier; SE, Mode 12	11		μν μV		
		Headphone Amplifier; OCL, Mode 4	8				
			9		μV		
		Headphone Amplifier; OCL, Mode 8 Headphone Amplifier; OCL, Mode 12	12		μV μV		
		$V_{RIPPLE} = 200mV_{PP}$; $f_{RIPPLE} = 217Hz$, $R_L = 200mV_{PP}$; $f_{RIPPLE} = 217Hz$, $R_L = 200mV_{PP}$; BTL All audio inputs terminated to GND; output Speaker Output; Speaker Output Gain 6dE	referred	; R _L = 32Ω (H			
		Speaker Amplifier; Mode 1	79		dB		
		Speaker Amplifier; Mode 2	63		dB		
		Speaker Amplifier; Mode 3	62		dB		
		Speaker Amplifier Output; Speaker Output Gain 0dB					
		Speaker Amplifier; Mode 1	84		dB		
PSRR	Power Supply Rejection Ratio	Speaker Amplifier; Mode 2	63		dB		
		Speaker Amplifier; Mode 3	62		dB		
		Headphone Amplifier Output					
		Headphone Amplifier; SE, Mode 4	83		dB		
		Headphone Amplifier; SE, Mode 8	84		dB		
		Headphone Amplifier; SE, Mode 12	78		dB		
		Headphone Amplifier; OCL, Mode 4	83		dB		
		Headphone Amplifier; OCL, Mode 8	80		dB		
		Headphone Amplifier; OCL, Mode 12	77		dB		
VOL	Volume Control Step Size Error		±0.2		dB		
VO		Maximum Attenuation	-86	-91 -81	dB (min) dB (max)		
VOL _{RANGE}	Digital Volume Control Range	Maximum Gain	18	17.4 18.6	dB (min) dB (max)		
A _{u(HP)}	HP (SE) Mute Attenuation	Output Mode 1, 2, 3	96		dB		
	MONO_IN Input Impedance	Maximum gain setting	12.5	10 15	k Ω (min) kΩ (max)		
Z _{IN}	L _{IN} and R _{IN} Input Impedance	Maximum attenuation setting	110	90 130	kΩ (min) kΩ (max)		
CMPP	Common Mode Delection Det	$f = 217Hz$, $V_{CM} = 1V_{PP}$, Speaker, BTL, Mode 1, $R_L = 8\Omega$ Differential Input	61		dB		
CMRR	Common-Mode Rejection Ratio	$f = 217Hz$, $V_{CM} = 1V_{PP}$, Headphone, OCL, Mode 4, $R_L = 32\Omega$ Stereo Input	66		dB		

			LM4	LM49120	
Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limits)
X _{TALK} Crosstalk	Headphone; P _{OUT} = 12mW f = 1kHz, OCL. Mode 8	-60		dB	
	Headphone; P _{OUT} = 12mW f = 1kHz, SE, Mode 8	-72		dB	
		$C_B = 4.7 \mu F$, OCL	35		ms
T _{WU} Wake-Up Time from Shutdown	C _B = 2.2μF, SE, Normal Turn On Mode Turn_On_Time = 1	120		ms	
	C _B = 2.2μF, OCL	30		ms	
		C _B = 4.7μF, SE, Fast Turn On Mode Turn_On_Time = 0	130		ms

Electrical Characteristics 5.0V (Notes 1, 2) The following specifications apply for $V_{DD} = 5.0V$, $T_A = 25^{\circ}C$, all volume controls set to 0dB, unless otherwise specified.

			LM49120		Units
Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	(Limits)
		V _{IN} = 0, No Load			
	Output mode 5, 6, 7, 9, 10, 11, 13, 14, 15 OCL Headphone	7.2		mA	
		Output mode 5, 6, 7, 9, 10, 11, 13, 14, 15 SE Headphone	6.4		mA
I _{DD} Supply Current	Output mode 1, 2, 3 OCL Headphone	6.4		mA	
	Output mode 1, 2, 3 SE Headphone	4.8		mA	
		Output mode 4, 8, 12 OCL Headphone	4.4		mA
	Output mode 4, 8, 12 SE Headphone	3.5		mA	
I _{SD}	Shutdown Current	Shutdown Mode 0	0.01		μA
		V _{IN} = 0V, Output Mode 10, LS output	10		mV
V _{os}	Output Offset Voltage	V _{IN} = 0V, Output Mode 10, HP output, (OCL), 0dB (HP Output Gain)	1.5		mV
Po	Output Power	LS _{OUT} ; $R_L = 8\Omega$ THD+N = 1%; f = 1kHz, BTL, Mode 1	1.3		W
r 0		L_{OUT} and R_{OUT} ; $R_L = 32\Omega$ THD+N = 1%; f = 1kHz, OCL, Mode 8	85		mW
		LS _{OUT} f = 1kHz P _{OUT} = 250mW; R _L = 8Ω, BTL, Mode 1	0.05		%
THD+N Total Harmonic Distortion + Noise	L_{OUT} and R_{OUT} , f = 1kHz P_{OUT} = 12mW; R _L = 32 Ω , SE, Mode 8	0.015		%	
		L_{OUT} and R_{OUT} , f = 1kHz P _{OUT} = 12mW; R _L = 32 Ω , OCL, Mode 8	0.015		%

www.BDTIC.com/TI

www.national.com

			LM4	9120	مناملا		
Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limits)		
		A-weighted,	, ,				
		inputs terminated to GND, Output referred					
		Speaker Amplifier; Mode 1	17		μV		
		Speaker Amplifier; Mode 2	27		μV		
		Speaker Amplifier; Mode 3	33		μV		
e _{OUT}	Output Noise	Headphone Amplifier; SE, Mode 4	8		 μV		
001		Headphone Amplifier; SE, Mode 8	8		μV		
		Headphone Amplifier; SE, Mode 12	12		μV		
		Headphone Amplifier; OCL, Mode 4	9		μV μV		
		Headphone Amplifier; OCL, Mode 8	9		μν μV		
		Headphone Amplifier; OCL, Mode 12	12		μν μV		
		$V_{RIPPLE} = 200 \text{mV}_{PP}$; $f_{RIPPLE} = 217 \text{Hz}$, $R_L = 8$ (Speaker); $R_L = 32\Omega$ (Headphone) $C_B = 2.2 \mu \text{F}$, BTL All audio inputs terminated to GND; output r Speaker Output; Speaker Output Gain 6dB					
		Speaker Amplifier; Mode 1	69		dB		
		Speaker Amplifier; Mode 1 Speaker Amplifier; Mode 2	60		dB		
		Speaker Amplifier; Mode 3	58		dB		
		Speaker Amplifier Output; Speaker Output (uD		
PSRR	RR Power Supply Rejection Ratio	Speaker Amplifier; Mode 1	84		dB		
- On T		Speaker Amplifier; Mode 2	63		dB		
		Speaker Amplifier; Mode 3	62		dB		
		Headphone Amplifier Output	02		40		
		Headphone Amplifier; SE, Mode 4	75		dB		
		Headphone Amplifier; SE, Mode 8	75		dB		
		Headphone Amplifier; SE, Mode 12	72		dB		
		Headphone Amplifier; OCL, Mode 4	75		dB		
		Headphone Amplifier; OCL, Mode 8	75		dB		
		Headphone Amplifier; OCL, Mode 12	72		dB		
VOL	Volume Control Step Size Error		±0.2		dB		
		Maximum Attenuation	-86	-91 -81	dB dB		
VOL _{RANGE}	Digital Volume Control Range	Maximum Gain	18		dB dB		
A _{u(HP)}	HP (SE) Mute Attenuation	Output Mode 1, 2, 3	96		dB		
3(1117					kΩ		
_	MONO_IN Input Impedance	Maximum gain setting	12.5		kΩ		
Z _{IN}	L_{IN} and R_{IN} Input Impedance	Maximum attenuation setting	110		kΩ kΩ		
	Common-Mode Rejection Batio	$f = 217Hz, V_{CM} = 1V_{PP},$ Speaker, BTL, Mode 1, R _L = 8 Ω Differential Input	61		dB		
CMRR	Common-Mode Rejection Ratio	$ f = 217 Hz, V_{CM} = 1V_{PP}, $ Headphone, OCL, Mode 4, $ R_L = 32\Omega $ Stereo Input	66		dB		

www.national.com

			LM4	LM49120	
Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limits)
X _{TALK} Crosstalk	Headphone; P _{OUT} = 12mW f = 1kHz, OCL, Mode 8	-54		dB	
	Headphone; P _{OUT} = 12mW f = 1kHz, SE, Mode 8	-72		dB	
		$C_B = 4.7 \mu F, OCL$	28		ms
F	Woke Up Time from Shutdown	C _B = 2.2μF, SE, Normal Turn On Mode Turn_On_Time = 1	151		ms
WU	Wake-Up Time from Shutdown	$C_B = 2.2 \mu F$, OCL	25		ms
		C _B = 4.7μF, SE, Fast Turn On Mode Turn_On_Time = 0	168		ms

I²C Timing Characteristics $2.2V \le I^2C_V_{DD} \le 5.5V$, (Notes 1, 2)

The following specifications apply for $V_{DD} = 5.0V$ and 3.3V, $T_A = 25^{\circ}C$, 2.2V $\leq I^2C_V_{DD} \leq 5.5V$, unless otherwise specified.

	Parameter		L	Units	
Symbol		Conditions	Typical (Note 6)	Limits (Note 7)	(Limits)
t ₁	I ² C Clock Period			2.5	µs (min)
t ₂	I ² C Data Setup Time			100	ns (min)
t ₃	I ² C Data Stable Time			0	ns (min)
t ₄	Start Condition Time			100	ns (min)
t ₅	Stop Condition Time			100	ns (min)
t ₆	I ² C Data Hold Time			100	ns (min)
V _{IH}	I ² C Input Voltage High			0.7xl ² CV _{DD}	V (min)
V _{IL}	I ² C Input Voltage Low			0.3xl ² CV _{DD}	V (max)

I²C Timing Characteristics $1.7V \le I^2C_V_{DD} \le 2.2V$ (Notes 1, 2)

The following specifications apply for V_{DD} = 5.0V and 3.3V, T_A = 25°C, 1.7V ≤ I²C_V_{DD} ≤ 2.2V, unless otherwise specified.

	Parameter		L	Units	
Symbol		Conditions	Typical (Note 6)	Limits (Note 7)	(Limits)
t ₁	I ² C Clock Period			2.5	µs (min)
t ₂	I ² C Data Setup Time			250	ns (min)
t ₃	I ² C Data Stable Time			0	ns (min)
t ₄	Start Condition Time			250	ns (min)
t ₅	Stop Condition Time			250	ns (min)
t ₆	I ² C Data Hold Time			250	ns (min)
V _{IH}	I ² C Input Voltage High			0.7xl ² CV _{DD}	V (min)
V _{IL}	I ² C Input Voltage Low			0.3xl ² CV _{DD}	V (max)

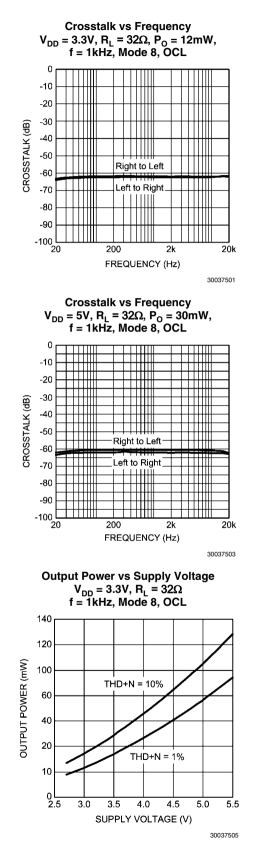
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

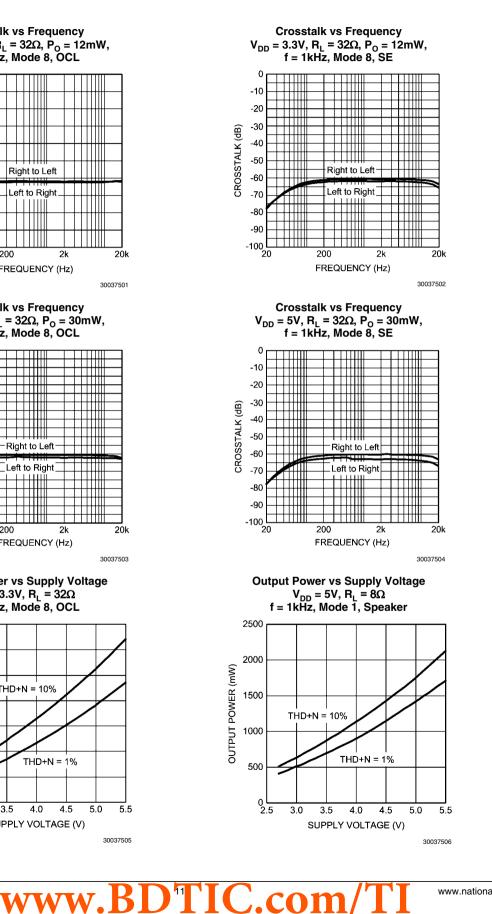
Note 2: The *Electrical Characteristics* tables list guaranteed specifications under the listed *Recommended Operating Conditions* except as otherwise modified or specified by the *Electrical Characteristics Conditions* and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in *Absolute Maximum Ratings*, whichever is lower.

Note 4: Human body model, applicable std. JESD22-A114C.

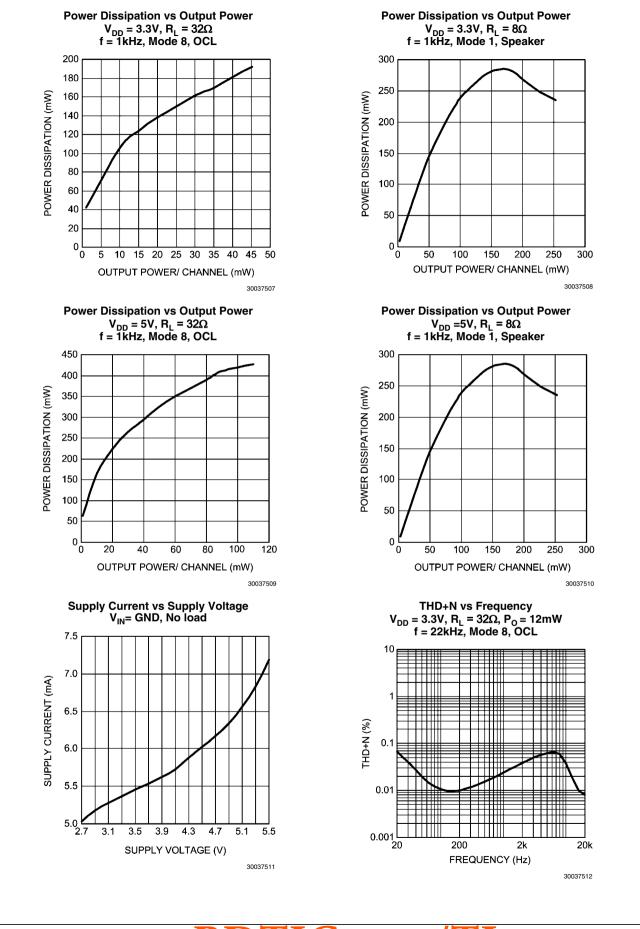
Note 5: Machine model, applicable std. JESD22-A115-A.

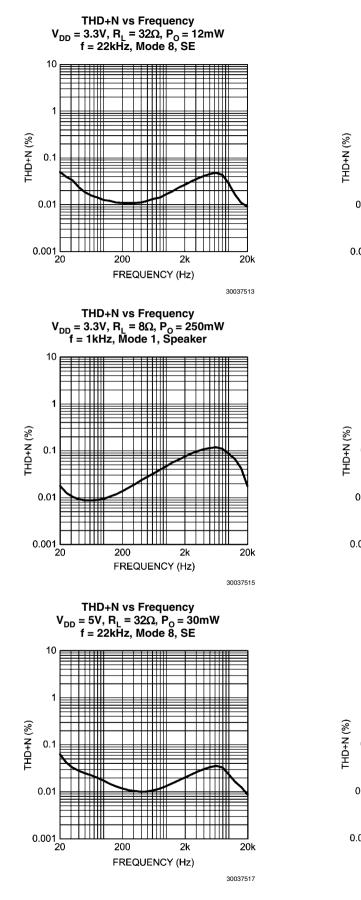

Note 6: Typical values represent most likely parametric norms at $T_A = +25^{\circ}C$, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

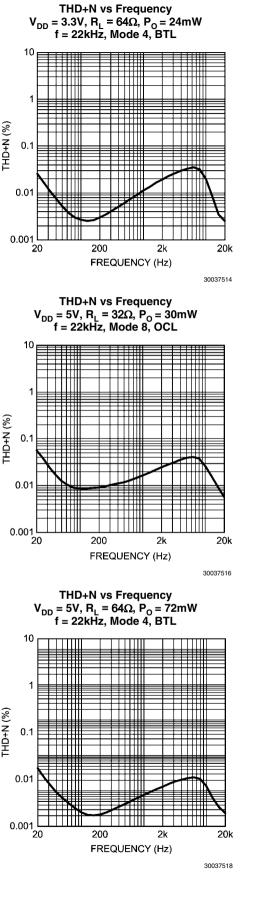

www.BDTIC.com/TI

Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.

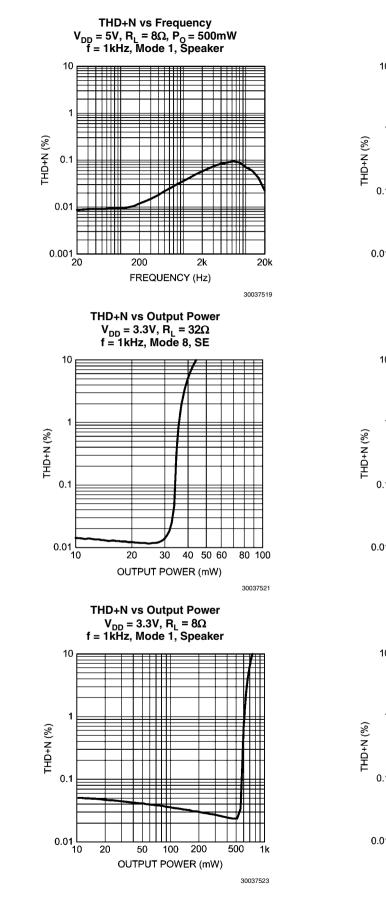
Typical Performance Characteristics

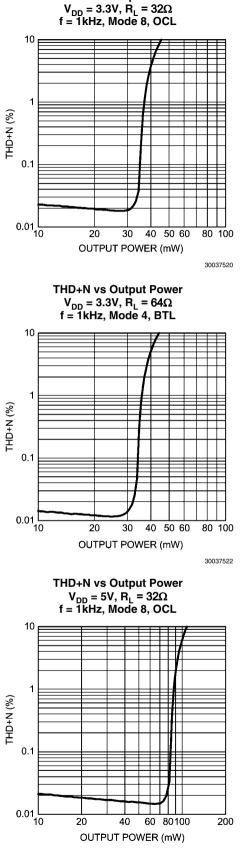

Filter BW = 22kHz


www.national.com


www.national.com

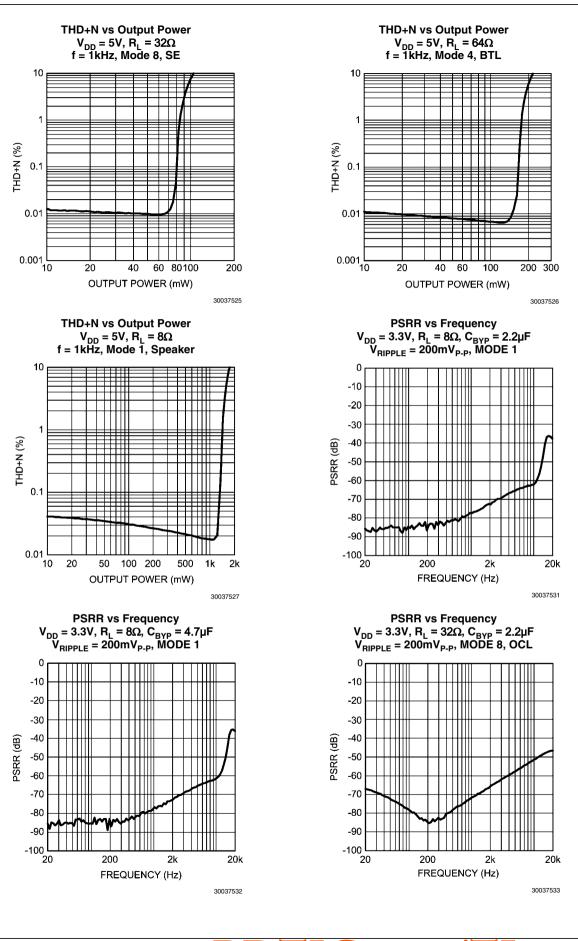
www.


B

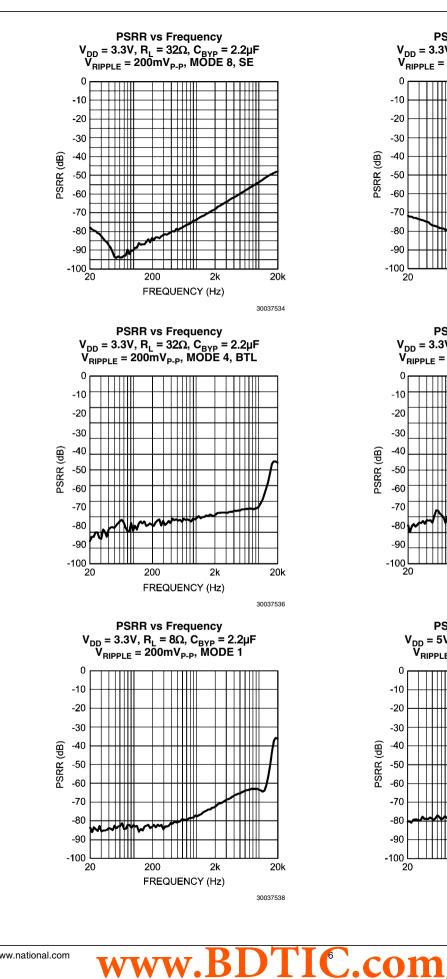


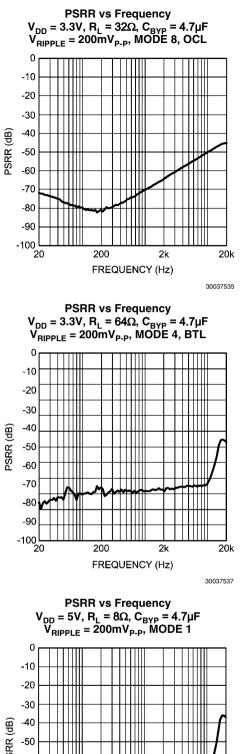
DTIC.con

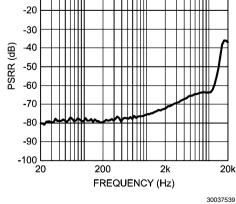
www.national.com

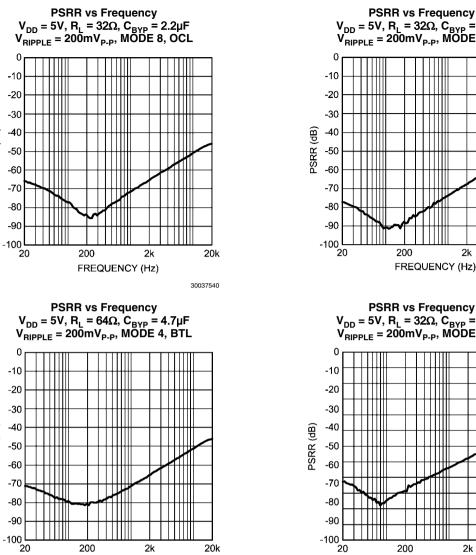


THD+N vs Output Power


30037524


www.national.com




www.national.com

www.national.com

20k

www.BDTIC.com/

30037542

0

-10 -20

-30

-40

-50 -60

-70 -80

-90

0

-10 -20

-30

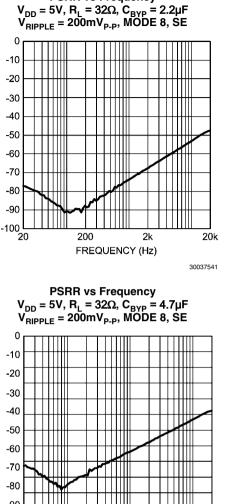
-40

-50 -60

-70

-80

-90


200

FREQUENCY (Hz)

2k

PSRR (dB)

PSRR (dB)

200

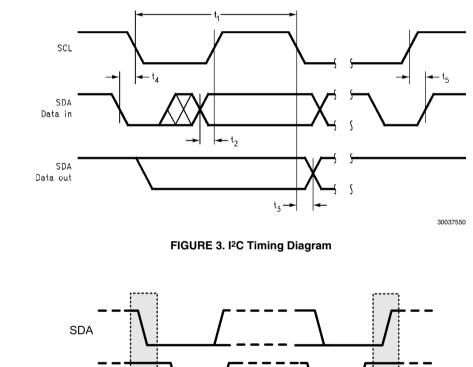
FREQUENCY (Hz)

2k

30037543

20k

Application Information I²C COMPATIBLE INTERFACE


The LM49120 is controlled through an I²C compatible serial interface that consists of a serial data line (SDA) and a serial clock (SCL). The clock line is uni-directional. The data line is bi-directional (open drain). The LM49120 and the master can communicate at clock rates up to 400kHz. Figure 3 shows the I²C interface timing diagram. Data on the SDA line must be stable during the HIGH period of SCL. The LM49120 is a transmit/receive slave-only device, reliant upon the master to generate the SCL signal. Each transmission sequence is framed by a START condition and a STOP condition (Figure 4). Each data word, device address and data, transmitted over the bus is 8 bits long and is always followed by an acknowledge pulse (Figure 5). The LM49120 device address is 1111100.

I2C BUS FORMAT

The I²C bus format is shown in Figure 5. The START signal, the transition of SDA from HIGH to LOW while SCL is HIGH, is generated, alerting all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, most significant bit (MSB) first, followed by the R/\overline{W} bit. $R/\overline{W} = 0$ indicates the master is writing to the slave device, R/W = 1 indicates the master wants to read data from the slave device. Set R/ \overline{W} = 0; the LM49120 is a WRITE-ONLY device and will not respond the R/W = 1. The data is latched in on the rising edge of the clock. Each address bit must be stable while SCL is HIGH. After the last address bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM49120 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK).

Once the master device registers the ACK bit, the 8-bit register data word is sent. Each data bit should be stable while SCL is HIGH. After the 8-bit register data word is sent, the LM49120 sends another ACK bit. Following the acknowledgement of the register data word, the master issues a STOP bit, allowing SDA to go high while SCL is high.

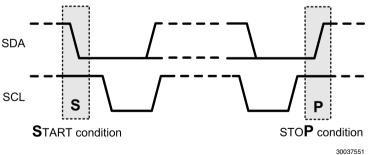


FIGURE 4. Start and Stop Diagram

ww.BDTIC.com

SCL START MSB DEVICE ADDRESS LSB VRW ACK MSB REGISTER DATA LSB V ACK STOP

30037552

FIGURE 5. Example Write Sequence

TABLE 1. Device Address

	B7	B6	B5	B4	B3	B2	B1	B0 (R/W)
Device Address	1	1	1	1	1	0	0	0

TABLE 2. Control Registers

	B7	B6	B5	B4	B3	B2	B1	B0
Shutdown Control	0	0	0	OCL/SE	HP/BTL	SD_I ² CV _{DD}	Turn_On _Time	PWR_On
Output Mode Control	0	1	0	0	MC3	MC2	MC1	MC0
Output Gain Control	1	0	0	0	LS_GAIN	HP_GAIN2	HP_GAIN1	HP_GAIN0
Mono Input Volume Control	1	0	1	MG4	MG3	MG2	MG1	MG0
Left Input Volume Control	1	1	0	LG4	LG3	LG2	LG1	LG0
Right Input Volume Control	1	1	1	RG4	RG3	RG2	RG1	RG0

TABLE 3. Shutdown Control Register

Bit	Name	Value	Description
B4	OSC/SE	0	Single-Ended headphone mode (Capacitively Coupled)
D4	030/3E	1	Output Capacitor-less (OCL) headphone mode
PO	HP/BTL	0	Single-ended stereo headphone output mode
B3		1	Mono, BTL output mode.
B2	SD_I ² CVDD	0	$\rm I^2CV_{DD}$ acts as an active low RESET input. If $\rm I^2CV_{DD}$ drops below 1.1V, the device is reset and the I2C registers are restored to their default state.
		1	Normal Operation. I ² CV _{DD} voltage does not reset the device
B1	TURN ON TIME	0	Fast turn on time (120ms)
ы		1	Normal turn on time (130ms)
B0	PWR ON	0	Device Disabled
ВО		1	Device Enabled

TABLE 4. Output Mode Control (HP/BTL = 0)

Output Mode Number	МСЗ	MC2	MC1	МСО	LS Output	HP R Output	HP L Output
0	0	0	0	0	SD	SD	SD
1	0	0	0	1	G _M x M	Mute	Mute
2	0	0	1	0	$2 \times (G_L \times L + G_R \times R)$	Mute	Mute
3	0	0	1	1	$2 \times (G_L \times L + G_R \times R) + G_M \times M$	Mute	Mute
4	0	1	0	0	SD	G _M x M/2	G _M x M/2
5	0	1	0	1	G _M x M	G _M x M/2	G _M x M/2
6	0	1	1	0	$2 \times (G_L \times L + G_R \times R)$	G _M x M/2	G _M x M/2
7	0	1	1	1	$2 \times (G_L \times L + G_R \times R) + G_M \times M$	G _M x M/2	G _M x M/2
8	1	0	0	0	SD	G _R x R	G _L x L
9	1	0	0	1	G _M x M	G _R x R	G _L x L
10	1	0	1	0	$2 \times (G_L \times L + G_R \times R)$	G _R x R	G _L x L
11	1	0	1	1	$2 \times (G_L \times L + G_R \times R) + G_M \times M$	G _R x R	G _L x L
12	1	1	0	0	SD	$G_R \times R + G_M \times M/2$	$G_L \times L + G_M \times M/2$
13	1	1	0	1	G _M x M	$G_R \times R + G_M \times M/2$	G _L x L + G _M x M/2
14	1	1	1	0	$2 \times (G_L \times L + G_R \times R)$	$G_R \times R + G_M \times M/2$	G _L x L + G _M x M/2
15	1	1	1	1	$2 \times (G_L \times L + G_R \times R) + G_M \times M$	G _R x R + G _M x M/2	G _L x L + G _M x M/2

www.BDTIC.com/TI

M: Mono Differential Input

R: Right In

L: Left In SD: Shutdown

 G_M : Mono Volume Control Gain G_R : Right Stereo Volume Control Gain

 G_L : Left Stereo Volume Control Gain

Output Mode Number	МСЗ	MC2	MC1	МСО	LS Output	HP R Output	HP L Output
4	0	1	0	0	SD	G _M x M+/2	G _M x M-∕2
5	0	1	0	1	G _M x M	G _M x M+/2	G _M x M ⁻ /2
6	0	1	1	0	$2 \times (G_L \times L + G_R \times R)$	G _M x M+/2	G _M x M ⁻ /2
7	0	1	1	1	2 x (G _L x L + G _R x R) + G _P x P	G _M x M+/2	G _M x M-/2
12	1	1	0	0	SD	G _R x R + G _M x M+/2	G _L x L + G _M x M ⁻ /2
13	1	1	0	1	G _M x M	G _R x R + G _M x M+/2	G _L x L + G _M x M ⁻ /2
14	1	1	1	0	$2 \times (G_L \times L + G_R \times R)$	G _R x R + G _M x M+/2	G _L x L + G _M x M⁻/2
15	1	1	1	1	2 x (G _L x L + G _R x R) + G _M x M	G _R x R + G _M x M+/2	G _L x L + G _M x M ⁻ /2

TABLE 6. Volume Control Table

Volume Step	_G4	_G3	_G2	_G1	_G0	Gain (dB)
1	0	0	0	0	0	Mute
2	0	0	0	0	1	-46.50
3	0	0	0	1	0	-40.50
4	0	0	0	1	1	-34.50
5	0	0	1	0	0	-30.00
6	0	0	1	0	1	-27.00
7	0	0	1	1	0	-24.00
8	0	0	1	1	1	-21.00
9	0	1	0	0	0	-18.00
10	0	1	0	0	1	-15.00
11	0	1	0	1	0	-13.50
12	0	1	0	1	1	-12.00
13	0	1	1	0	0	-10.50
14	0	1	1	0	1	-9.00
15	0	1	1	1	0	-7.50
16	0	1	1	1	1	-6.00
17	1	0	0	0	0	-4.50
18	1	0	0	0	1	-3.00
19	1	0	0	1	0	-1.50
20	1	0	0	1	1	0.00
21	1	0	1	0	0	1.50
22	1	0	1	0	1	3.00
23	1	0	1	1	0	4.50
24	1	0	1	1	1	6.00
25	1	1	0	0	0	7.50
26	1	1	0	0	1	9.00
27	1	1	0	1	0	10.50
28	1	1	0	1	1	12.00
29	1	1	1	0	0	13.50
30	1	1	1	0	1	15.00
31	1	1	1	1	0	16.50
32	1	1	1	1	1	18.00

TABLE 7. Output Gain Control (Headphone)

HP_GAIN2	HP_GAIN1	HP_GAIN0	GAIN (dB)
0	0	0	0
0	0	1	-1.2
0	1	0	-2.5
0	1	1	-4.0
1	0	0	-6.0
1	0	1	-8.5
1	1	0	-12
1	1	1	-18

TABLE 8. Output Gain Control (Loudspeaker)

Bit	Value	Gain (dB) Differential Input	Gain (dB) Single-Ended Input
	0	0	+6
LS_GAIN	1	+6	+12

BRIDGE CONFIGURATION EXPLAINED

The LM49120 loudspeaker amplifier is designed to drive a load differentially, a configuration commonly referred to as a bridge-tied load (BTL). The BTL configuration differs from the single-ended configuration, where one side of the load is connected to ground. A BTL amplifier offers advantages over a single-ended device. By driving the load differentially, the output voltage is doubled, compared to a single-ended amplifier under similar conditions. This doubling of the output voltage leads to a quadrupling of the output power, for example, the theoretical maximum output power for a single-ended amplifier driving 8Ω and operating from a 5V supply is 390mW, while the theoretical maximum output power for a BTL amplifier operating under the same conditions is 1.56W. Since the amplifier outputs are both biased about V_{DD}/2, there is no net DC voltage across the load, eliminating the DC blocking capacitors required by single-ended, single-supply amplifiers.

Headphone Amplifier

The LM49120 headphone amplifier features two different operating modes, output capacitor-less (OCL) and single-ended (SE) capacitor coupled mode.

The OCL architecture eliminates the bulky, expensive output coupling capacitors required by traditional headphone amplifiers. In OCL mode, the LM49120 headphone section uses three amplifiers. Two amplifiers drive the headphones, while the third (V_{OC}) is set to the internally generated bias voltage (typically $V_{DD}/2$). The third amplifier is connected to the return terminal of the headphone jack (Figure 1). In this configuration, the signal side of the headphone is biased to $V_{DD}/2$, the return is biased to $V_{DD}/2$, thus there is no net DC voltage across the headphone, eliminating the need for an output coupling capacitor. Removing the output coupling capacitors from the headphone signal path reduces component count, reducing system cost and board space consumption, as well as improving low frequency performance.

In OCL mode, the headphone return sleeve is biased to $V_{DD}/2$. When driving headphones, the voltage on the return sleeve is not an issue. However, if the headphone output is used as a line out, the $V_{DD}/2$ can conflict with the GND potential that the line-in would expect on the return sleeve. When the return of the headphone jack is connected to GND the V_{OC} amplifier of the LM49120 detects an output short circuit condition and is disabled, preventing damage to the LM49120, and allowing the headphone return to be biased at GND.

Single-Ended, Capacitor Coupled Mode

In single-ended mode, the V_{OC} amplifier is disabled, and the headphone outputs are coupled to the jack through series capacitors, allowing the headphone return to be connected to GND (Figure 2). In SE mode, the LM49120 requires output coupling capacitors to block the DC component of the amplifier output, preventing DC current from flowing to the load. The output capacitor and speaker impedance form a high pass filter with a -3dB roll-off determined by:

$$f_{-3dB} = 1 / 2\pi R_L C_O$$
 (Hz) (1)

Where R_L is the headphone impedance, and C_O is the value of the output coupling capacitor. Choose C_O such that f_{-3dB} is well below the lowest frequency of interest. Setting f_{-3dB} too high results in poor low frequency performance. Select capacitor dielectric types with low ESR to minimize signal loss due to capacitor series resistance and maximize power transfer to the load.

Headphone Amplifier BTL Mode

The LM49120 headphone amplifiers feature a BTL mode where the two headphone outputs, L_{OUT} and R_{OUT} are configured to drive a mono speaker differentially. In BTL mode, the amplifier accepts audio signals from either the differential MONO inputs, or the single-ended stereo inputs, and converts them to a mono BTL output. However, if the stereo inputs are 180° out of phase, no audio will be present at the amplifier outputs. Bit B3 (HP/BTL) in the Shutdown Control Register determines the headphone output mode. Set HP/BTL = 0 for stereo headphone mode, set HP/BTL = 1 for BTL mode.

Input Mixer/Multiplexer

The LM49120 includes a comprehensive mixer multiplexer controlled through the I²C interface. The mixer/multiplexer allows any input combination to appear on any output of the LM49120. Multiple input paths can be selected simultaneously. Under these conditions, the selected inputs are mixed together and output on the selected channel. Tables 4 and 5 show how the input signals are mixed together for each possible input selection.

Audio Amplifier Gain Setting

Each channel of the LM49120 has two separate gain stages. Each input stage features a 32-step volume control with a range of -46dB to +18dB (Table 6). The loudspeaker output stage has two additional gain settings: 0dB and +6dB (Table 8) when the differential MONO input is selected, and +6dB and +12dB when the single-ended stereo inputs are selected. The headphone gain is not affected by the input mode. Each headphone output stage has 8 gain settings (Table 7). This allows for a maximum separation of 22dB between the speaker and headphone outputs when both are active.

Calculate the total gain of the given signal path as follows:

$$A_{VOL} + A_{VOS} = A_{VTOTAL}$$
 (dB) (2)

Where A_{VOL} is the volume control level, A_{VOS} is the output stage gain setting, and A_{VTOTAL} is the total gain for the signal path.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful single-ended or bridged amplifier.

A direct consequence of the increased power delivered to the load by a bridge amplifier is higher internal power dissipation. The LM49120 has a pair of bridged-tied amplifiers driving a handsfree speaker, MONO. The maximum internal power dissipation operating in the bridge mode is twice that of a single-ended amplifier. From Equation (2), assuming a 5V power supply and an 8 Ω load, the maximum MONO power dissipation is 633mW.

$$P_{DMAX-SPKBOUT} = 4(V_{DD})^2 / (2\pi^2 R_1): Bridge Mode$$
(3)

The LM49120 also has a pair of single-ended amplifiers driving stereo headphones, R_{OUT} and L_{OUT}. The maximum internal power dissipation for R_{OUT} and L_{OUT} is given by equation (3) and (4). From Equations (3) and (4), assuming a 5V power supply and a 32 Ω load, the maximum power dissipation for L_{OUT} and R_{OUT} is 40mW, or 80mW total.

$$P_{DMAX-LOUT} = (V_{DD})^2 / (2\pi^2 R_L)$$
: Single-ended Mode (4)

$$P_{DMAX-ROUT} = (V_{DD})^2 / (2\pi^2 R_L)$$
: Single-ended Mode (5)

The maximum internal power dissipation of the LM49120 occurs when all three amplifiers pairs are simultaneously on; and is given by Equation (5).

$$P_{DMAX-TOTAL} = P_{DMAX-SPKROUT} + P_{DMAX-LOUT} + P_{DMAX-ROUT}$$
(6)

The maximum power dissipation point given by Equation (5) must not exceed the power dissipation given by Equation (6):

$$\mathsf{P}_{\mathsf{DMAX}} = (\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{JA}} \tag{7}$$

The LM49120's T_{JMAX} = 150°C. In the SQ package, the LM49120's θ_{JA} is 46°C/W. At any given ambient temperature T_A, use Equation (6) to find the maximum internal power dissipation supported by the IC packaging. Rearranging Equation (6) and substituting P_{DMAX-TOTAL} for P_{DMAX}' results in Equation (7). This equation gives the maximum ambient temperature that still allows maximum stereo power dissipation without violating the LM49120's maximum junction temperature.

$$T_{A} = T_{JMAX} - P_{DMAX-TOTAL} \theta_{JA}$$
(8)

For a typical application with a 5V power supply and an 8Ω load, the maximum ambient temperature that allows maximum mono power dissipation without exceeding the maximum junction temperature is approximately 121°C for the SQ package.

$$T_{JMAX} = P_{DMAX-TOTAL} \theta_{JA} + T_A$$
(9)

Equation (8) gives the maximum junction temperature T_{JMAX} . If the result violates the LM49120's 150°C, reduce the

maximum junction temperature by reducing the power supply voltage or increasing the load resistance. Further allowance should be made for increased ambient temperatures.

The above examples assume that a device is a surface mount part operating around the maximum power dissipation point. Since internal power dissipation is a function of output power, higher ambient temperatures are allowed as output power or duty cycle decreases. If the result of Equation (5) is greater than that of Equation (6), then decrease the supply voltage, increase the load impedance, or reduce the ambient temperature. If these measures are insufficient, a heat sink can be added to reduce θ_{IA} . The heat sink can be created using additional copper area around the package, with connections to the ground pin(s), supply pin and amplifier output pins. External, solder attached SMT heatsinks such as the Thermallov 7106D can also improve power dissipation. When adding a heat sink, the θ_{JA} is the sum of $\theta_{JC},$ $\theta_{CS},$ and $\theta_{SA}.$ (θ_{JC} is the junction-to-case thermal impedance, θ_{CS} is the case-to-sink thermal impedance, and θ_{SA} is the sink-to-ambient thermal impedance). Refer to the Typical Performance Characteristics curves for power dissipation information at lower output power levels.

PROPER SELECTION OF EXTERNAL COMPONENTS

Power Supply Bypassing/Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Place a 1 μ F ceramic capacitor from V_{DD} to GND. Additional bulk capacitance may be added as required.

Input Capacitor Selection

Input capacitors may be required for some applications, or when the audio source is single-ended. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM49120. The input capacitors create a high-pass filter with the input resistors R_{IN} . The -3dB point of the high pass filter is found using Equation (3) below.

$$f = 1 / (2\pi R_{IN}C_{IN})$$
 (Hz) (10)

Where the value of ${\rm R}_{\rm IN}$ is given in the Electrical Characteristics Table.

High pass filtering the audio signal helps protect the speakers. When the LM49120 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

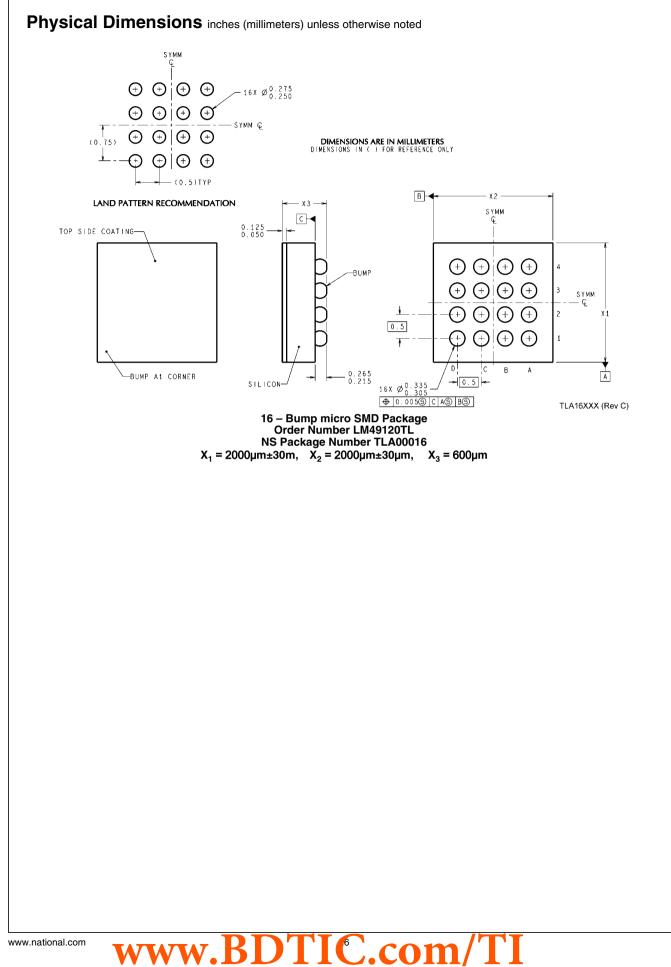
Bias Capacitor Selection

The LM49120 internally generates a $V_{DD}/2$ common-mode bias voltage. The BIAS capacitor C_{BIAS} , improves PSRR and THD+N by reducing noise at the BIAS node. Use a 2.2µF ceramic placed as close to the device as possible.

www.national.com

PCB LAYOUT GUIDELINES

Minimize trace impedance of the power, ground and all output traces for optimum performance. Voltage loss due to trace resistance between the LM49120 and the load results in decreased output power and efficiency. Trace resistance between the power supply and ground has the same effect as a poorly regulated supply, increased ripple and reduced peak output power. Use wide traces for power supply inputs and amplifier outputs to minimize losses due to trace resistance, as well as route heat away from the device. Proper grounding


Revision History

improves audio performance, minimizes crosstalk between channels and prevents digital noise from interfering with the audio signal. Use of power and ground planes is recommended.

Place all digital components and route digital signal traces as far as possible from analog components and traces. Do not run digital and analog traces in parallel on the same PCB layer. If digital and analog signal lines must cross either over or under each other, ensure that they cross in a perpendicular fashion.

Rev	Date	Description
1.0	06/26/08	Initial release.
1.01	07/15/08	Edited the Ordering Information table.

Notes

LM49120

Notes

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench
Audio	www.national.com/audio	Analog University	www.national.com/AU
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns
Power Management	www.national.com/power	Feedback	www.national.com/feedback
Switching Regulators	www.national.com/switchers		
LDOs	www.national.com/ldo		
LED Lighting	www.national.com/led		
PowerWise	www.national.com/powerwise		
Serial Digital Interface (SDI)	www.national.com/sdi		
Temperature Sensors	www.national.com/tempsensors		
Wireless (PLL/VCO)	www.national.com/wireless		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

N

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

C.con

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

www.national.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products		Applications	
	Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
	Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
	Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
	DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
	DSP	dsp.ti.com	Industrial	www.ti.com/industrial
	Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
	Interface	interface.ti.com	Security	www.ti.com/security
	Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
	Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
	Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
	RFID	www.ti-rfid.com		
	OMAP Mobile Processors	www.ti.com/omap		
	Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m	

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated