TPS73201-Q1, TPS73215-Q1, TPS73216-Q1 TPS73218-Q1, TPS73225-Q1, TPS73230-Q1 TPS73233-Q1, TPS73250-Q1

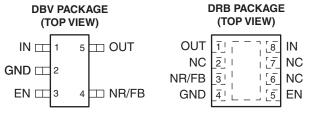
SGLS303D-MAY 2005-REVISED MARCH 2009

www.ti.com

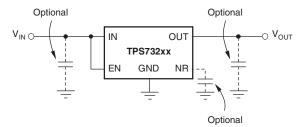
CAP-FREE NMOS 250-mA LOW-DROPOUT REGULATOR WITH REVERSE-CURRENT PROTECTION

FEATURES

- Qualified for Automotive Applications
- Stable with No Output Capacitor or Any Value or Type of Capacitor
- Input Voltage Range: 1.7 V to 5.5 V
- Ultralow Dropout Voltage: 40 mV Typ at 250 mA
- Excellent Load Transient Response—With or Without Optional Output Capacitor
- New NMOS Topology Provides Low Reverse Leakage Current
- Low Noise: 30 μV_{RMS} Typ (10 kHz to 100 kHz)
- 0.5% Initial Accuracy
- 1% Overall Accuracy (Line, Load, and Temperature)
- Less Than 1 μA Max I_Q in Shutdown Mode
- Thermal Shutdown and Specified Min/Max Current Limit Protection
- Available in Multiple Output Voltage Versions
 - Fixed Outputs of 1.2 V, 1.5 V, 1.6 V, 1.8 V,
 2.5 V, 3 V, 3.3 V, and 5 V
 - Adjustable Outputs From 1.2 V to 5.5 V
 - Custom Outputs Available


APPLICATIONS

- Portable/Battery-Powered Equipment
- Post-Regulation for Switching Supplies
- Noise-Sensitive Circuitry Such as VCOs
- Point of Load Regulation for DSPs, FPGAs, ASICs, and Microprocessors


DESCRIPTION

The TPS732xx family of low-dropout (LDO) voltage regulators uses a new topology: an NMOS pass element in a voltage-follower configuration. This topology is stable using output capacitors with low ESR, and even allows operation without a capacitor. It also provides high reverse blockage (low reverse current) and ground pin current that is nearly constant over all values of output current.

The TPS732xx uses an advanced BiCMOS process to yield high precision while delivering low dropout voltages and low ground pin current. Current consumption, when not enabled, is under 1 μ A and ideal for portable applications. The extremely low output noise (30 μ V_{RMS} with 0.1 μ F C_{NR}) is ideal for powering VCOs. These devices are protected by thermal shutdown and foldback current limit.

NC - No internal connection

Typical Application Circuit for Fixed-Voltage Versions

Figure 1.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SGLS303D-MAY 2005-REVISED MARCH 2009

ORDERING INFORMATION(1)

INSTRUMENTS

www.ti.com

T _J	V _{OUT} (TYP) ⁽²⁾	PACKAGE ⁽³⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	Adjustable	SOT23-5 – DBV	Reel of 3000	TPS73201QDBVRQ1	PJOQ
	or 1.2 V ⁽⁴⁾	VSON-8 - DRB	Reel of 3000	TPS73201QDRBRQ1	PSAQ
	1.5 V	SOT23-5 – DBV	Reel of 3000	TPS73215DBVRQ1 (5)	PREVIEW
	1.6 V	SOT23-5 – DBV	Reel of 3000	TPS73216DBVRQ1 (5)	PREVIEW
-40°C to 125°C	1.8 V	SOT23-5 – DBV	Reel of 3000	TPS73218DBVRQ1 (5)	PREVIEW
	2.5 V	SOT23-5 – DBV	Reel of 3000	TPS73225QDBVRQ1	PJNQ
	3 V	SOT23-5 – DBV	Reel of 3000	TPS73230DBVRQ1 (5)	PREVIEW
	3.3 V	SOT23-5 – DBV	Reel of 3000	TPS73233DBVRQ1 (5)	PREVIEW
	5 V	SOT23-5 – DBV	Reel of 3000	TPS73250DBVRQ1 (5)	PREVIEW

- For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- Custom output voltages from 1.3 V to 4 V in 100-mV increments are available on a quick-turn basis for prototyping. Production quantities are available; minimum order quantities apply. Contact Texas Instruments for details and availability.
- Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- For fixed 1.2-V operation, tie FB to OUT.
- **Product Preview**

ABSOLUTE MAXIMUM RATINGS

over operating junction temperature range unless otherwise noted⁽¹⁾

	TPS732xx	UNIT
V _{IN} range	-0.3 to 6	V
V _{EN} range	-0.3 to 6	V
V _{OUT} range	-0.3 to 5.5	V
Peak output current	Internally limited	
Output short-circuit duration	Indefinite	
Continuous total power dissipation	See Power Dissipation Ratings	
Junction temperature range, T _J	−55 to +150	°C
Storage temperature range	-65 to +150	°C
ESD rating, HBM ⁽²⁾	(H2) 4	kV
ESD rating, CDM ⁽²⁾	(C4) 1	kV
ESD rating, MM ⁽²⁾	(M2) 200	V

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the Electrical Characteristics is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

POWER DISSIPATION RATINGS(1)

BOARD	PACKAGE	$R_{\theta JC}$	$R_{ hetaJA}$	DERATING FACTOR ABOVE T _A = 25°C	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
Low-K ⁽²⁾	DBV	64°C/W	255°C/W	3.9 mW/°C	390 mW	215 mW	155 mW
High-K ⁽³⁾	DBV	64°C/W	180°C/W	5.6 mW/°C	560 mW	310 mW	225 mW
High-K (3)	DRB	1.2°C/W	40°C/W	25.0 mW/°C	2.50 W	1.38 W	1 W

- See Power Dissipation in the Application Information section for more information related to thermal design.
- The JEDEC Low-K (1s) board design used to derive this data was a 3 inch x 3 inch, two-layer board with 2-ounce copper traces on top of the board
- The JEDEC High-K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1-ounce internal power and ground planes and 2-ounce copper traces on the top and bottom of the board.

ESD Protection Level per AEC Q100 Classification

SGLS303D-MAY 2005-REVISED MARCH 2009

ELECTRICAL CHARACTERISTICS

Instruments

Over operating temperature range (T $_J$ = -40°C to 125°C), V_{IN} = $V_{OUT(nom)}$ + 0.5 $V^{(1)}$, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μ F, unless otherwise noted. Typical values are at T_J = 25°C

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IN}	Input voltage range	e ⁽¹⁾		1.7		5.5	V	
V _{FB}	Internal reference	(TPS73201)	T _J = 25°C	1.198	1.2	1.21	V	
	Output voltage ran	ge (TPS73201) ⁽²⁾		V _{FB}		5.5-V _{DO}	V	
V _{OUT}	Accuracy ⁽¹⁾	Nominal	T _J = 25°C	-0.5%		+0.5%		
V 001		V _{IN} , I _{OUT} , and T _J	$(V_{OUT} + 0.5 \text{ V}) \le V_{IN} \le 5.5 \text{ V},$ 10 mA $\le I_{OUT} \le 250 \text{ mA}$	-1%	0.5%	+1%		
$\Delta V_{OUT} \% / \Delta V_{IN}$	Line regulation ⁽¹⁾		$(V_{OUT(nom)} + 0.5 \text{ V}) \le V_{IN} \le 5.5 \text{ V}$		0.06		%/V	
A)/ 0//A1	I and requisition		1 mA ≤ I _{OUT} ≤ 250 mA		0.002		%/mA	
$\Delta V_{OUT} \% \Delta I_{OUT}$	Load regulation		10 mA ≤ I _{OUT} ≤ 250 mA		0.0008			
V _{DO}	Dropout voltage (3) (V _{IN} = V _{OUT} (nom) – 0.1 V)		I _{OUT} = 250 mA		40	150	mV	
Z _O (DO)	Output impedance in dropout		$1.7 \text{ V} \leq \text{V}_{\text{IN}} \leq (\text{V}_{\text{OUT}} + \text{V}_{\text{DO}})$		0.25		Ω	
I _{CL}	Output current limit		$V_{OUT} = 0.9 \times V_{OUT(nom)}$	250	425	600	mA	
I _{SC}	Short-circuit current		V _{OUT} = 0 V		300		mA	
I _{REV}	Reverse leakage current ⁽⁴⁾ (-I _{IN})		$V_{EN} \le 0.5 \text{ V}, 0 \text{ V} \le V_{IN} \le V_{OUT}$		0.1	10	μΑ	
	Consumed with assument		$I_{OUT} = 10 \text{ mA } (I_{Q})$		400	550		
I _{GND}	Ground pin current		I _{OUT} = 250 mA		650	950	μΑ	
I _{SHDN}	Shutdown current (I _{GND})		$V_{EN} \le 0.5 \text{ V}, V_{OUT} \le V_{IN} \le 5.5$		0.02	1	μΑ	
	Power-supply rejection ratio		f = 100 Hz, I _{OUT} = 250 mA		58		dB	
PSRR	(ripple rejection)		f = 10 kHz, I _{OUT} = 250 mA	37			uБ	
\/	Output noise voltage BW = 10 Hz - 100 kHz		$C_{OUT} = 10 \mu F$, No C_{NR}	27 × V _{OUT}			\/	
V_N			C_{OUT} = 10 μ F, C_{NR} = 0.01 μ F	8.5 × V _{OUT}			μV _{RMS}	
t _{STR}	Startup time		$V_{OUT} = 3 \text{ V, } R_L = 30 \Omega$ $C_{OUT} = 1 \mu\text{F, } C_{NR} = 0.01 \mu\text{F}$		600		μs	
V _{EN} (HI)	Enable high (enabl	ed)		1.7		V_{IN}	V	
V _{EN} (LO)	Enable low (shutdo	own)		0		0.5	V	
I _{EN} (HI)	Enable pin current	(enabled)	V _{EN} = 5.5 V		0.02	0.1	μΑ	
т	Thermal shutdown temperature		Shutdown, Temperature increasing		160		°C	
T_{SD}			Reset, Temperature decreasing		140	-	C	

Minimum $V_{IN} = V_{OUT} + V_{DO}$ or 1.7 V, whichever is greater. TPS73201 is tested at $V_{OUT} = 2.5$ V. V_{DO} is not measured for the TPS73215 or TPS73216, because minimum $V_{IN} = 1.7$ V. (2) (3)

Fixed-voltage versions only; see the *Application Information* section for more information.

FUNCTIONAL BLOCK DIAGRAMS

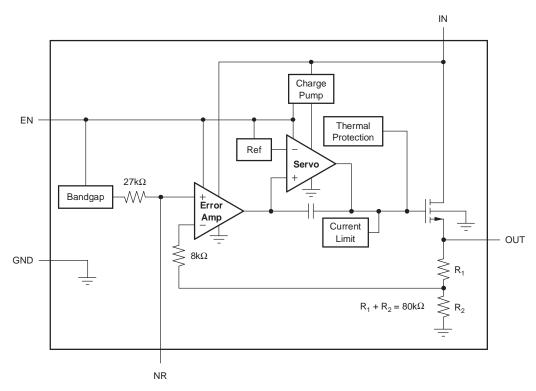


Figure 2. Fixed Voltage Version

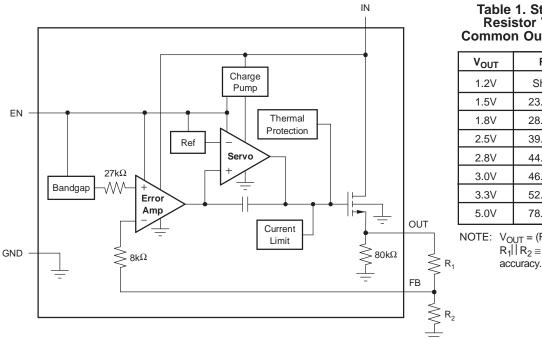
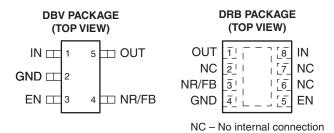


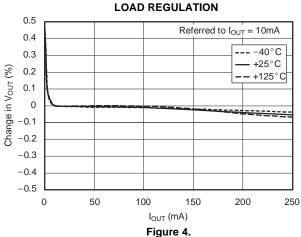
Figure 3. Adjustable Voltage Version

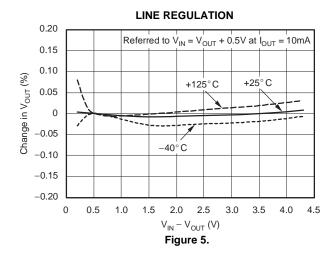

V _{OUT}	R ₁	R ₂		
1.2V	Short	Open		
1.5V	23.2kΩ	95.3kΩ		
1.8V	28.0kΩ	56.2kΩ		
2.5V	39.2kΩ	36.5kΩ		
2.8V	44.2kΩ	33.2kΩ		
3.0V	46.4kΩ	30.9kΩ		
3.3V	52.3kΩ	30.1kΩ		
5.0V	78.7kΩ	24.9kΩ		

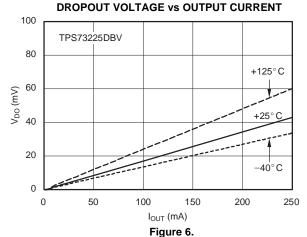
NOTE: $V_{OUT} = (R_1 + R_2)/R_2 \times 1.204$; $R_1 || R_2 \cong 19k\Omega$ for best

Product Folder (s)

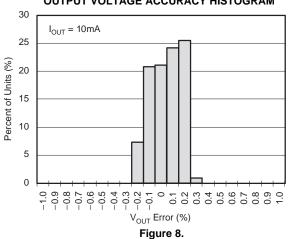
PIN ASSIGNMENTS

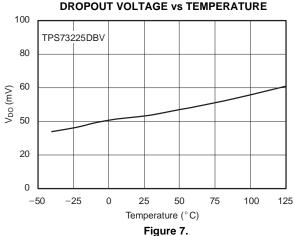

TERMINAL FUNCTIONS


TERMINAL								
NAME NO.		0.	DESCRIPTION					
NAME	DBV	DRB						
IN	IN 1 8		Unregulated input supply					
GND	2	4, Pad	Ground					
EN			Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode. See the <i>Shutdown</i> section under <i>Applications Information</i> for more details. EN can be connected to IN if not used.					
NR	4	3	Fixed voltage versions only—connecting an external capacitor to this pin bypasses noise generated by the internal bandgap. This allows output noise to be reduced to low levels.					
FB	4	3	Adjustable voltage version only—this is the input to the control loop error amplifier, and is used to set the output voltage of the device.					
NC	_	2, 6, 7	No internal connection					
OUT	5	1	Output of the regulator. There are no output capacitor requirements for stability.					



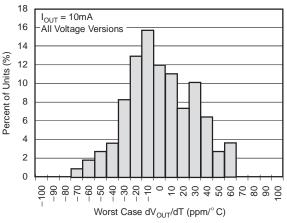
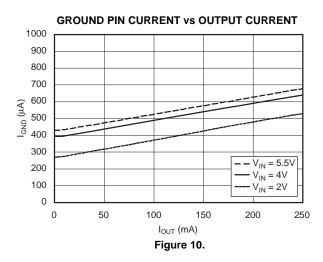
TYPICAL CHARACTERISTICS

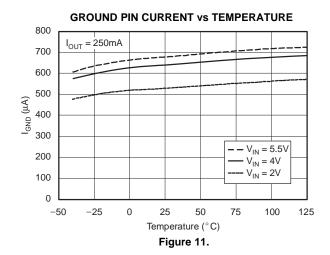

For all voltage versions at $T_J = 25$ °C, $V_{IN} = V_{OUT(nom)} + 0.5$ V, $I_{OUT} = 10$ mA, $V_{EN} = 1.7$ V, and $C_{OUT} = 0.1$ μ F, unless otherwise

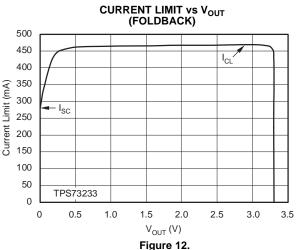


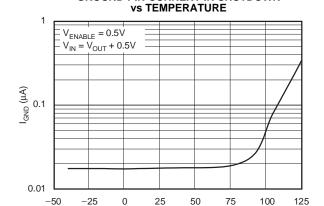
OUTPUT VOLTAGE ACCURACY HISTOGRAM

OUTPUT VOLTAGE DRIFT HISTOGRAM

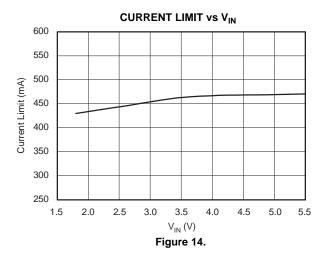



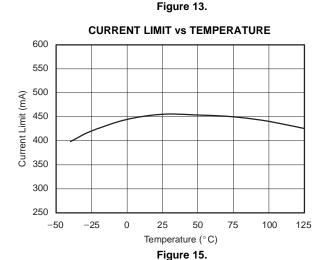

Figure 9.


Product Folder in (s)

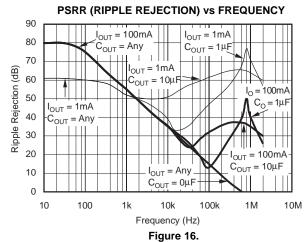


For all voltage versions at $T_J = 25^{\circ}C$, $V_{IN} = V_{OUT(nom)} + 0.5$ V, $I_{OUT} = 10$ mA, $V_{EN} = 1.7$ V, and $C_{OUT} = 0.1$ μF , unless otherwise noted





Temperature (°C)


GROUND PIN CURRENT IN SHUTDOWN

For all voltage versions at T_J = 25°C, V_{IN} = $V_{OUT(nom)}$ + 0.5 V, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μ F, unless otherwise noted

_

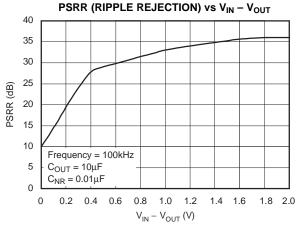


Figure 17.

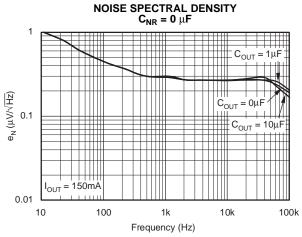


Figure 18.

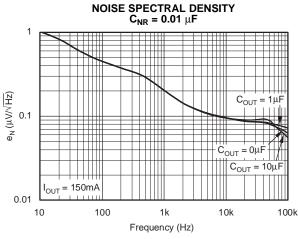
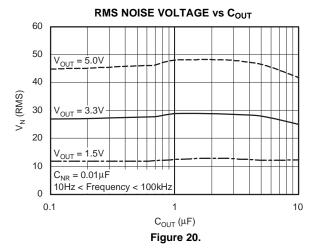
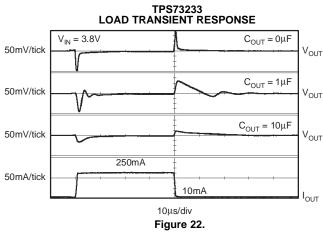



Figure 19.


RMS NOISE VOLTAGE vs CNR 140 $V_{OUT} = 5.0V$ 120 100 V_N (RMS) $t_{OUT} = 3.3 \text{V}$ 80 60 40 C_{OUT} = 0μF 10Hz < Frequency 0 10p 100p 10n 1p 1n C_{NR} (F) Figure 21.

i iguio z i.

Product Folder in (s)

For all voltage versions at $T_J = 25$ °C, $V_{IN} = V_{OUT(nom)} + 0.5$ V, $I_{OUT} = 10$ mA, $V_{EN} = 1.7$ V, and $C_{OUT} = 0.1$ μF , unless otherwise noted

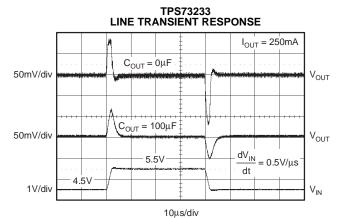
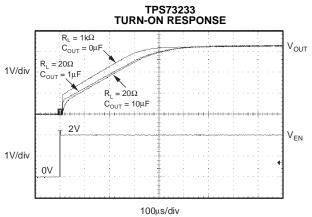



Figure 23.

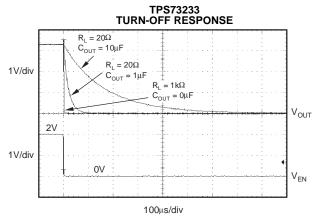
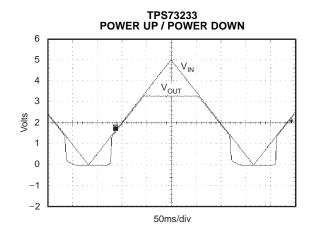



Figure 24.

Figure 25.

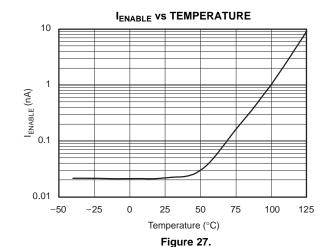
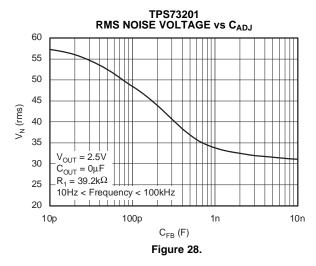
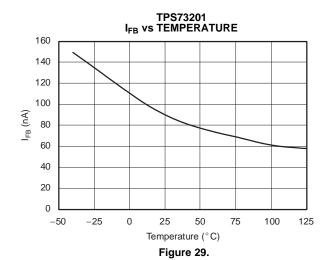
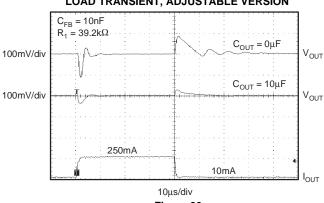




Figure 26.



For all voltage versions at $T_J = 25^{\circ}C$, $V_{IN} = V_{OUT(nom)} + 0.5$ V, $I_{OUT} = 10$ mA, $V_{EN} = 1.7$ V, and $C_{OUT} = 0.1$ μF , unless otherwise noted

TPS73201 LOAD TRANSIENT, ADJUSTABLE VERSION

TPS73201 LINE TRANSIENT, ADJUSTABLE VERSION V_{OUT} = 2.5\

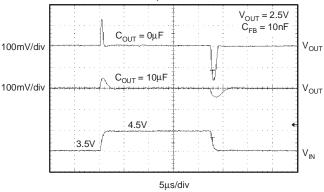


Figure 30.

Figure 31.

Product Folder (s)

APPLICATION INFORMATION

The TPS732xx belongs to a family of new generation LDO regulators that use an NMOS pass transistor to achieve ultra-low-dropout performance, reverse current blockage, and freedom from output capacitor constraints. These features, combined with low noise and an enable input, make the TPS732xx ideal for portable applications. This regulator family offers a wide selection of fixed output voltage versions and an adjustable output version. All versions have thermal and over-current protection, including foldback current limit.

Figure 32 shows the basic circuit connections for the fixed voltage models. Figure 33 gives the connections for the adjustable output version (TPS73201).

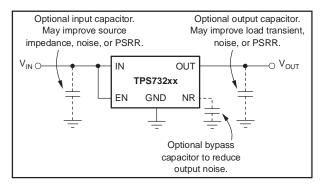


Figure 32. Typical Application Circuit for Fixed-Voltage Versions

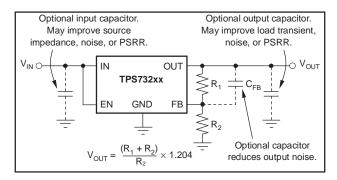


Figure 33. Typical Application Circuit for Adjustable-Voltage Versions

 R_1 and R_2 can be calculated for any output voltage using the formula shown in Figure 33. Sample resistor values for common output voltages are shown in Figure 3. For best accuracy, make the parallel combination of R_1 and R_2 approximately 19 k Ω .

Input and Output Capacitor Requirements

Although an input capacitor is not required for stability, it is good analog design practice to connect a $0.1-\mu F$ to $1-\mu F$ low ESR capacitor across the input supply near the regulator. This counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated or the device is located several inches from the power source.

The TPS732xx does not require an output capacitor for stability and has maximum phase margin with no capacitor. It is designed to be stable for all available types and values of capacitors. In applications where $V_{\text{IN}} - V_{\text{OUT}} < 0.5 \text{ V}$ and multiple low ESR capacitors are in parallel, ringing may occur when the product of C_{OUT} and total ESR drops below 50 nF. Total ESR includes all parasitic resistances, including capacitor ESR and board, socket, and solder joint resistance. In most applications, the sum of capacitor ESR and trace resistance will meet this requirement.

www.ti.com

Output Noise

A precision band-gap reference is used to generate the internal reference voltage, V_{REF} . This reference is the dominant noise source within the TPS732xx and it generates approximately 32 μV_{RMS} (10 Hz to 100 kHz) at the reference output (NR). The regulator control loop gains up the reference noise with the same gain as the reference voltage, so that the noise voltage of the regulator is approximately given by:

$$V_{N} = 32\mu V_{RMS} \times \frac{(R_{1} + R_{2})}{R_{2}} = 32\mu V_{RMS} \times \frac{V_{OUT}}{V_{REF}}$$
 (1)

Since the value of V_{RFF} is 1.2 V, this relationship reduces to:

$$V_{N}(\mu V_{RMS}) = 27 \left(\frac{\mu V_{RMS}}{V}\right) \times V_{OUT}(V)$$
 (2)

for the case of no C_{NR}.

An internal 27-k Ω resistor in series with the noise reduction pin (NR) forms a low-pass filter for the voltage reference when an external noise reduction capacitor, C_{NR} , is connected from NR to ground. For C_{NR} = 10 nF, the total noise in the 10-Hz to 100-kHz bandwidth is reduced by a factor of ~3.2, giving the approximate relationship:

$$V_{N}(\mu V_{RMS}) = 8.5 \left(\frac{\mu V_{RMS}}{V}\right) \times V_{OUT}(V)$$
 (3)

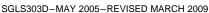
for $C_{NR} = 10 \text{ nF}$.

This noise reduction effect is shown as RMS Noise Voltage vs C_{NR} in the Typical Characteristics section.

The TPS73201 adjustable version does not have the noise-reduction pin available. However, connecting a feedback capacitor, C_{FB} , from the output to the FB pin will reduce output noise and improve load transient performance.

The TPS732xx uses an internal charge pump to develop an internal supply voltage sufficient to drive the gate of the NMOS pass element above V_{OUT} . The charge pump generates ~250 μV of switching noise at ~2 MHz; however, charge-pump noise contribution is negligible at the output of the regulator for most values of I_{OUT} and C_{OUT} .

Board Layout Recommendation to Improve PSRR and Noise Performance


To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device. In addition, the ground connection for the bypass capacitor should connect directly to the GND pin of the device.

Internal Current Limit

The TPS732xx internal current limit helps protect the regulator during fault conditions. Foldback helps to protect the regulator from damage during output short-circuit conditions by reducing current limit when V_{OUT} drops below 0.5 V. See Figure 12 in the *Typical Characteristics* section for a graph of I_{OUT} vs V_{OUT}.

Shutdown

The Enable pin is active high and is compatible with standard TTL-CMOS levels. V_{EN} below 0.5 V (max) turns the regulator off and drops the ground pin current to approximately 10 nA. When shutdown capability is not required, the Enable pin can be connected to V_{IN} . When a pullup resistor is used, and operation down to 1.8 V is required, use pullup resistor values below 50 k Ω .

Dropout Voltage

The TPS732xx uses an NMOS pass transistor to achieve extremely low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the NMOS pass device is in its linear region of operation and the input-to-output resistance is the R_{DS-ON} of the NMOS pass element.

For large step changes in load current, the TPS732xx requires a larger voltage drop from V_{IN} to V_{OUT} to avoid degraded transient response. The boundary of this transient dropout region is approximately twice the dc dropout. Values of $V_{IN} - V_{OUT}$ above this line ensure normal transient response.

Operating in the transient dropout region can cause an increase in recovery time. The time required to recover from a load transient is a function of the magnitude of the change in load current rate, the rate of change in load current, and the available headroom (V_{IN} to V_{OUT} voltage drop). Under worst-case conditions [full-scale instantaneous load change with ($V_{IN} - V_{OUT}$) close to dc dropout levels], the TPS732xx can take a couple of hundred microseconds to return to the specified regulation accuracy.

Transient Response

The low open-loop output impedance provided by the NMOS pass element in a voltage follower configuration allows operation without an output capacitor for many applications. As with any regulator, the addition of a capacitor (nominal value 1 μ F) from the output pin to ground will reduce undershoot magnitude but increase duration. In the adjustable version, the addition of a capacitor, C_{FB} , from the output to the adjust pin will also improve the transient response.

The TPS732xx does not have active pulldown when the output is over-voltage. This allows applications that connect higher voltage sources, such as alternate power supplies, to the output. This also results in an output overshoot of several percent if the load current quickly drops to zero when a capacitor is connected to the output. The duration of overshoot can be reduced by adding a load resistor. The overshoot decays at a rate determined by output capacitor C_{OUT} and the internal/external load resistance. The rate of decay is given by:

(Fixed voltage version)

$$dV/dt = \frac{V_{OUT}}{C_{OUT} \times 80k\Omega}$$
 (4)

(Adjustable voltage version)

$$dV/dt = \frac{V_{OUT}}{C_{OUT} \times 80k\Omega \parallel (R_1 + R_2)}$$
(5)

Reverse Current

The NMOS pass element of the TPS732xx provides inherent protection against current flow from the output of the regulator to the input when the gate of the pass device is pulled low. To ensure that all charge is removed from the gate of the pass element, the enable pin must be driven low before the input voltage is removed. If this is not done, the pass element may be left on due to stored charge on the gate.

After the enable pin is driven low, no bias voltage is needed on any pin for reverse current blocking. Note that reverse current is specified as the current flowing out of the IN pin due to voltage applied on the OUT pin. There will be additional current flowing into the OUT pin due to the $80-k\Omega$ internal resistor divider to ground (see Figure 2 and Figure 3).

For the TPS73201, reverse current may flow when V_{FB} is more than 1 V above V_{IN} .

SGLS303D-MAY 2005-REVISED MARCH 2009

II 151 TOME! 115

www.ti.com

Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This limits the dissipation of the regulator, protecting it from damage due to overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature should be limited to 125°C maximum. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should trigger at least 35°C above the maximum expected ambient condition of your application. This produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the TPS732xx has been designed to protect against overload conditions. It was not intended to replace proper heatsinking. Continuously running the TPS732xx into thermal shutdown will degrade device reliability.

Power Dissipation

The ability to remove heat from the die is different for each package type, presenting different considerations in the PCB layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Performance data for JEDEC low- and high-K boards are shown in the Power Dissipation Ratings table. Using heavier copper will increase the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers will also improve the heat-sink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation is equal to the product of the output current times the voltage drop across the output pass element (V_{IN} to V_{OLIT}):

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
(6)

Power dissipation can be minimized by using the lowest possible input voltage necessary to assure the required output voltage.

Package Mounting

Solder pad footprint recommendations for the TPS732xx are presented in the *Solder Pad Recommendations for Surface-Mount Devices* (SBFA015) application bulletin, available from the Texas Instruments web site at www.ti.com.

PACKAGE OPTION ADDENDUM

www.ti.com 25-Jan-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS73201QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS73201QDRBRQ1	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
TPS73225QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

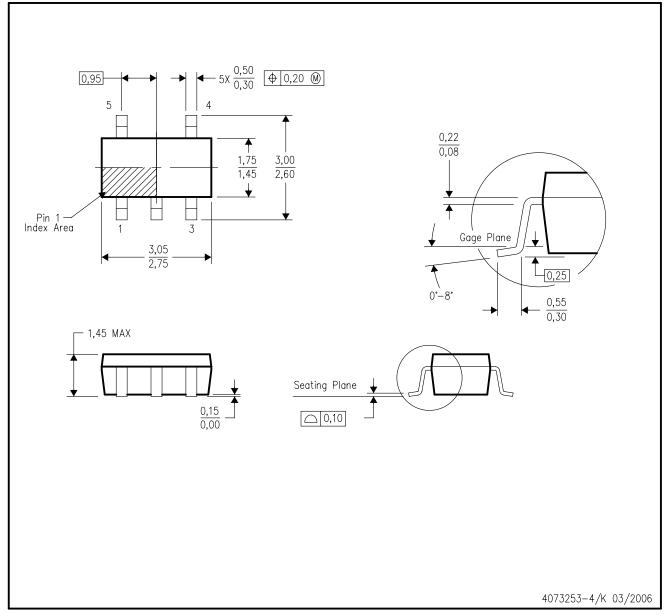
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS73201-Q1, TPS73225-Q1:

• Catalog: TPS73201, TPS73225

• Enhanced Product: TPS73201-EP, TPS73225-EP

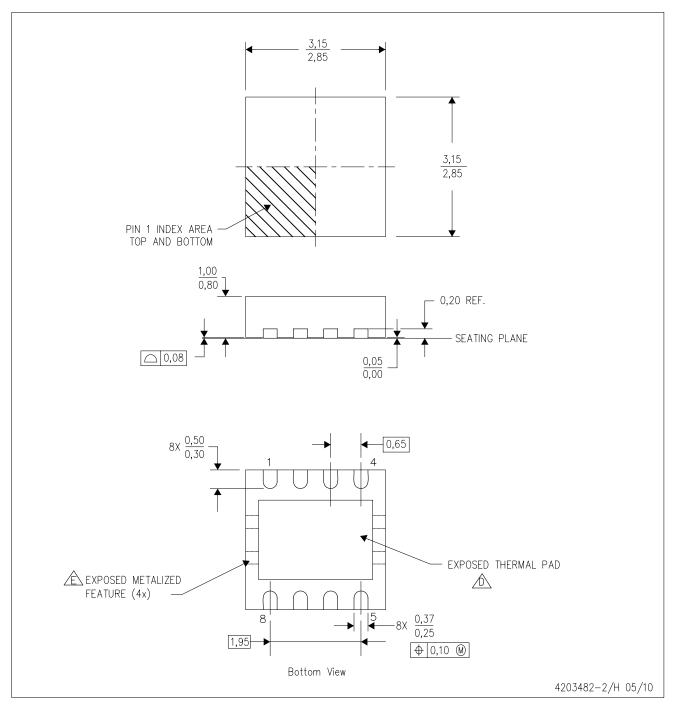

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

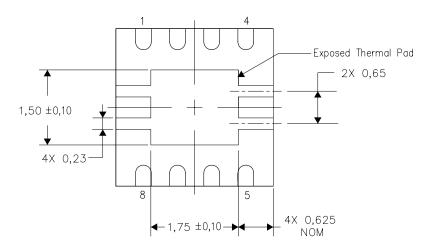
DRB (S-PVSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- Metalized features are supplier options and may not be on the package.

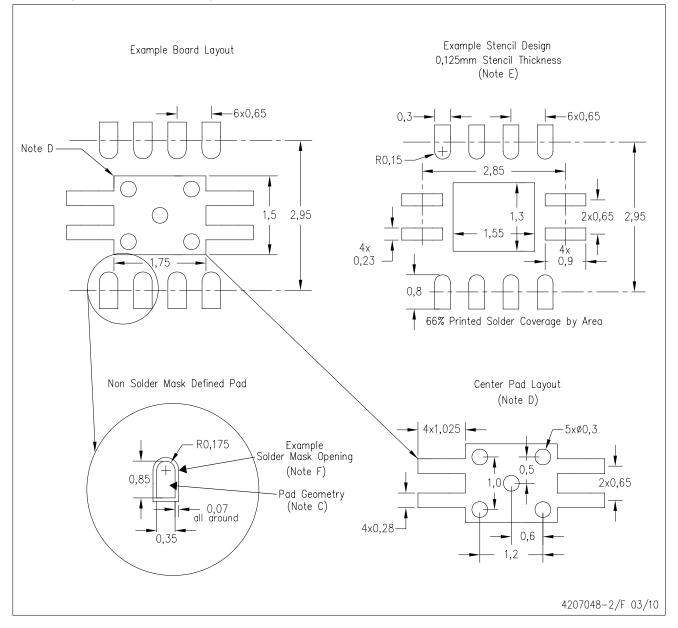


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DRB (S-PVSON-N8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Communications and www.ti.com/communications Telecom DSP Computers and www.ti.com/computers dsp.ti.com Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com **Energy** www.ti.com/energy Industrial www.ti.com/industrial Logic logic.ti.com Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com www.ti.com/security Security **RFID** www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video www.ti.com/wireless-apps Wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

