

2 Ω , CMOS, ± 5 V/+5 V SPST Switches

ADG601/ADG602

FEATURES

Low on resistance, 2.5 Ω maximum <0.65 Ω on-resistance flatness Dual ± 2.7 V to ± 5.5 V or single +2.7 V to +5.5 V supplies Rail-to-rail input signal range Tiny, 6-lead SOT-23; 8-lead MSOP; and 820 μ m \times 2255 μ m die Low power consumption TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment
Power routing
Communication systems
Data acquisition systems
Sample-and-hold systems
Avionics
Relay replacement
Battery-powered systems

GENERAL DESCRIPTION

The ADG601/ADG602 are monolithic, CMOS single-pole single-throw (SPST) switches with on resistance typically less than 2.5 Ω . The low on-resistance flatness makes the ADG601/ADG602 ideally suited to many applications, particularly those requiring low distortion. These switches are ideal replacements for mechanical relays because they are more reliable, have lower power requirements, and are available in much smaller package sizes.

The ADG601 is a normally open (NO) switch, and the ADG602 is a normally closed (NC) switch. Each switch conducts equally

FUNCTIONAL BLOCK DIAGRAMS

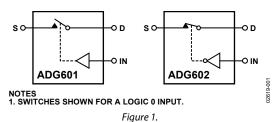


Table 1. Truth Table

ADG601 IN	ADG602 IN	Switch Condition
0	1	Off
1	0	On

well in both directions when the device is on, with the input signal range extending to the supply rails.

The switches are available in tiny, 6-lead SOT-23; 8-lead MSOP; and 820 $\mu m \times 2255~\mu m$ die.

PRODUCT HIGHLIGHTS

- 1. Low on resistance (2 Ω typical)
- 2. Dual ± 2.7 V to ± 5.5 V or single +2.7 V to +5.5 V supplies
- 3. Tiny, 6-lead SOT-23; 8-lead MSOP; and 820 μ m \times 2255 μ m die
- 4. Rail-to-rail input signal range

TABLE OF CONTENTS

Changes to Figure 19.....9

Features	Absolute Maximum Ratings5
Applications	ESD Caution5
Functional Block Diagrams	Pin Configurations and Function Descriptions6
General Description	Typical Performance Characteristics7
Product Highlights	Terminology9
Revision History	Test Circuits
Specifications	Outline Dimensions
Dual Supply 3	Ordering Guide11
Single Supply4	
REVISION HISTORY	
3/07—Rev. B to Rev. C	Updated Outline Dimensions11
Added Die Package	Changes to Ordering Guide11
Changes to Specifications3	6/03—Rev. 0 to Rev. A
Added Figure 4 and Table 66	Changes to Specifications2
Changes to Ordering Guide	Changes to Ordering Guide4
3/06—Rev. A to Rev. B	Updated Outline Dimensions8
Updated Format	
Changes to 6-Lead SOT-23 (RJ-6) Pin Configuration6	
Added Pin Function Descriptions Table6	

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

	B Version ¹			Test Conditions/Comments	
Parameter	+25°C -40°C to +85°C		Unit		
ANALOG SWITCH					
Analog Signal Range		V _{SS} to V _{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$	
On Resistance (R _{ON})	2		Ω typ	$V_S = \pm 4.5 \text{ V}$, $I_{DS} = -10 \text{ mA}$; see Figure 15	
	2.5	5.5	Ω max		
On-Resistance Flatness (R _{FLAT (ON)})	0.35	0.4	Ω typ	$V_S = \pm 3.3 \text{ V}, I_{DS} = -10 \text{ mA}$	
	0.6	0.65	Ω max		
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$	
Source Off Leakage, Is (Off)	±0.01		nA typ	$V_S = +4.5 \text{ V}/-4.5 \text{ V}, V_D = -4.5 \text{ V}/+4.5 \text{ V}$; see Figure 16	
	±0.25	±1	nA max		
Drain Off Leakage, I _D (Off)	±0.01		nA typ	$V_S = +4.5 \text{ V}/-4.5 \text{ V}, V_D = -4.5 \text{ V}/+4.5 \text{ V}$; see Figure 16	
	±0.25	±1	nA max		
Channel On Leakage, ID, Is (On)	±0.01		nA typ	$V_S = V_D = +4.5 \text{ V or } -4.5 \text{ V; see Figure 17}$	
	±0.25	±1	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, VINL		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.1	μA max		
Digital Input Capacitance, C _{IN} = -	-2		pF typ		
DYNAMIC CHARACTERISTICS ²					
ton	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	120	155	ns max	$V_S = 3.3 \text{ V}$; see Figure 18	
toff	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	75	90	ns max	$V_S = 3.3 \text{ V}$; see Figure 18	
Charge Injection	250		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 19}$	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20	
Bandwidth –3 dB	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 21	
C _s (Off)	50		pF typ	f = 1 MHz	
C _D (Off)	50		pF typ	f = 1 MHz	
C_D , C_S (On)	145		pF typ	f = 1 MHz	
POWER REQUIREMENTS			·	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$	
I_{DD}	0.001		μA typ	Digital inputs = 0 V or 5.5 V	
		1.0	μA max		
I _{SS}	0.001		μA typ	Digital inputs = 0 V or 5.5 V	
		1.0	μA max		

 $^{^{1}}$ Temperature range for B version is -40°C to $+85^{\circ}\text{C}.$

² Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

	B Version ¹ +25°C -40°C to +85°C			Test Conditions/Comments	
Parameter			Unit		
ANALOG SWITCH					
Analog Signal Range		$0 V to V_{DD}$	V	$V_{DD} = 4.5 \text{ V}$	
On Resistance (R _{ON})	3.5		Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_{DS} = -10 \text{ mA; see Figure } 15$	
	5	8	Ω max		
On-Resistance Flatness (R _{FLAT (ON)})	0.2	0.2	Ω typ	$V_S = 1.5 \text{ V to } 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$	
		0.6	Ω max		
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$	
Source Off Leakage, I₅ (Off)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 16}$	
	±0.25	±1	nA max		
Drain Off Leakage, I _D (Off)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V, } V_D = 1 \text{ V/4.5 V; see Figure 16}$	
	±0.25	±1	nA max		
Channel On Leakage, ID, IS (On)	±0.01		nA typ	$V_S = V_D = 4.5 \text{ V or } 1 \text{ V; see Figure } 17$	
	±0.25	±1	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
		±0.1	μA max		
Digital Input Capacitance, C _{IN}	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
t _{on}	-110 —		ns typ-	$R_L = 300 \Omega$, $C_L = 35 pF$	
	220	280	ns max	$V_S = 3.3 \text{ V}$; see Figure 18	
t _{OFF}	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	80	110	ns max	$V_S = 3.3 \text{ V}$; see Figure 18	
Charge Injection	20		pC typ	$V_S = 0 \text{ V, } R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 19}$	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20	
Bandwidth –3 dB	180		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 21	
C _s (Off)	50		pF typ	f = 1 MHz	
C _D (Off)	50		pF typ	f = 1 MHz	
C _D , C _s (On)	145		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$	
l _{DD}	0.001		μA typ	Digital inputs = 0 V or 5.5 V	
		1.0	μA max		

 $^{^1}$ Temperature range for B version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

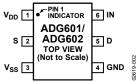
 $T_A = 25$ °C, unless otherwise noted.

Table 4.

1 able 4.		
Parameter	Rating	
V _{DD} to V _{SS}	13 V	
V _{DD} to GND	−0.3 V to +6.5 V	
V _{SS} to GND	+0.3 V to -6.5 V	
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$	
Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$	
	30 mA (whichever	
	occurs first)	
Continuous Current, S or D	100 mA	
Peak Current, S or D		
(Pulsed at 1 ms, 10% Duty Cycle Max)	200 mA	
Operating Temperature Range		
Industrial (B Version)	−40°C to +85°C	
Storage Temperature Range	−65°C to +150°C	
Junction Temperature	150°C	
Thermal Resistance		
MSOP		
$ heta_{JA}$	206°C/W	
$ heta_{ extsf{JC}}$	44°C/W	
SOT-23		
$ heta_{JA}$	229.6°C/W	
$ heta_{JC}$	91.99°C/W	
Lead Temperature, Soldering (10 sec)	300°C— – – –	
IR Reflow, Peak Temperature	220°C	

 $^{^{\}rm 1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Only one absolute maximum rating may be applied at a time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

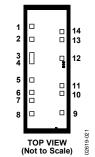


Figure 4. Die (820 μ m imes 2255 μ m)

Table 5. Pin Function Descriptions

Pin	No.		
6-Lead SOT-23	8-Lead MSOP	Mnemonic	Description
1	4	V_{DD}	Most Positive Power Supply Potential.
2	8	S	Source Terminal. Can be an input or output.
3	5	V _{SS}	Most Negative Power Supply Potential.
4	7	GND	Ground (0 V) Reference.
5	1	D	Drain Terminal. Can be an input or output.
6	6	IN	Logic Control Input.
N/A	2, 3	NC	No Connect.

ADG601/

ADG602 TOP VIEW

(Not to Scale) 5 V_{SS}

NC 2

NC 3

7 GND

6 IN

Table 6. Die Pad Coordinates¹

		Die Pad Coordinates			
Die Pad No.	X (μm)	Υ (μm)	Mnemonic	Description	
1	-265	+754	NC	No Connect.	
2	-265	+525	D	Drain Terminal. Can be an input or output. ²	
3	-265	+241	D	Drain Terminal. Can be an input or output. ²	
4	-265	+141	D	Drain Terminal. Can be an input or output. ²	
5	-265	-191	NC	No Connect.	
6	-265	-409	NC	No Connect.	
7	-265	-549	NC	No Connect.	
8	-265	-787	V_{DD}	Most Positive Power Supply Potential.	
9	+265	-767	V _{SS}	Most Negative Power Supply Potential.	
10	+265	-429	IN	Logic Control Input.	
11	+265	-289	GND	Ground (0 V) Reference.	
12	+265	+189	S	Source Terminal. Can be an input or output. ³	
13	+265	+521	S	Source Terminal. Can be an input or output. ³	
14	+265	+661	NC	Source Terminal. Can be an input or output.	

¹ Measured from the center of the die.

² Bond the D pads together to a single point to preserve the on resistance and current handling capability. The common point acts as the drain pin of the switch.

³ Bond the S pads together to a single point to preserve the on resistance and current handling capability. The common point acts as the source pin of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

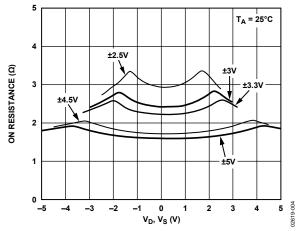


Figure 5. On Resistance vs. V_D , V_S (Dual Supply)

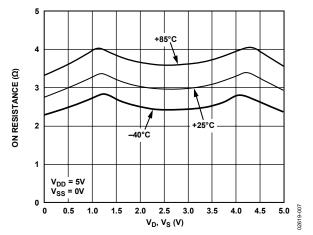


Figure 8. On Resistance vs. V_D , V_S for Different Temperatures (Single Supply)

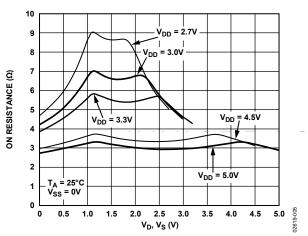


Figure 6. On Resistance vs. V_D, V_S (Single Supply)

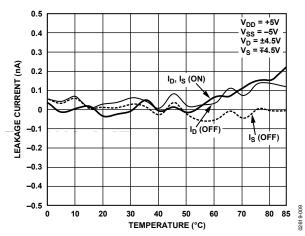


Figure 9. Leakage Currents vs. Temperature (Dual Supply)

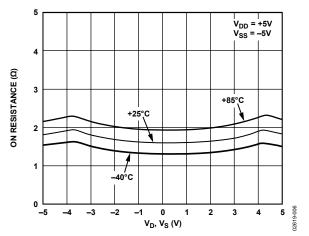


Figure 7. On Resistance vs. V_D , V_S for Different Temperatures (Dual Supply)

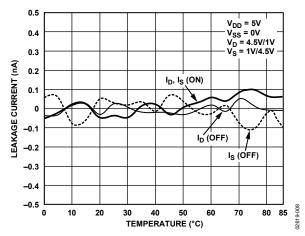


Figure 10. Leakage Currents vs. Temperature (Single Supply)

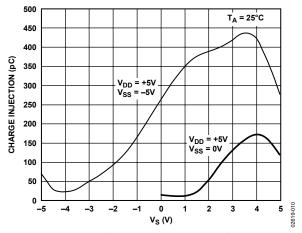


Figure 11. Charge Injection vs. Source Voltage

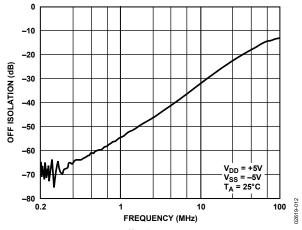


Figure 13. Off Isolation vs. Frequency

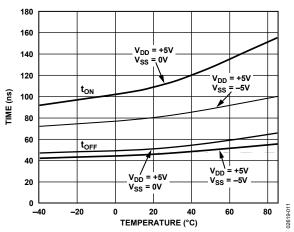


Figure 12. ton/toff Times vs. Temperature

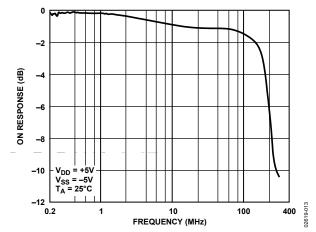


Figure 14. On Response vs. Frequency

TERMINOLOGY

 V_{DD}

Most positive power supply potential.

 \mathbf{V}_{ss}

Most negative power supply potential.

 I_{DD}

Positive supply current.

Iss

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or an output.

D

Drain terminal. Can be an input or an output.

IN

Logic control input.

 V_D, V_S

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT} (ON)

Flatness is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 $\mathbf{V}_{ ext{INH}}$

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

 C_D , C_S (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay between applying the digital control input and the output switching on.

toff

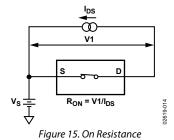
Delay between applying the digital control input and the output switching off.

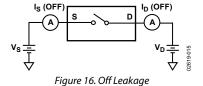
Charge Injection

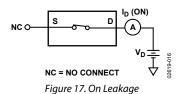
A measure of the glitch impulse transferred from the digital input to the analog output during switching.

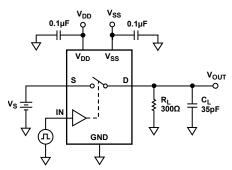
Off Isolation

A measure of unwanted signal coupling through an off switch.


On Response


Frequency response of the on switch.


Insertion Loss


Loss due to the on resistance of the switch.

TEST CIRCUITS

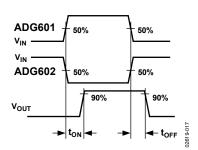


Figure 18. Switching Times

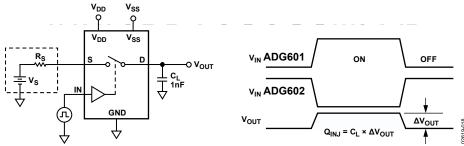


Figure 19. Charge Injection

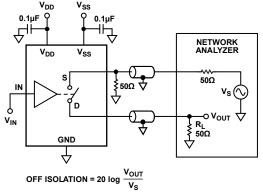
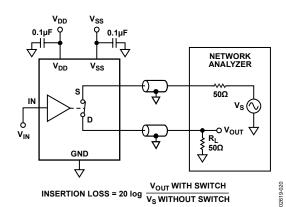
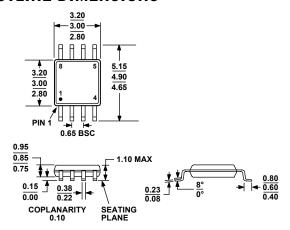
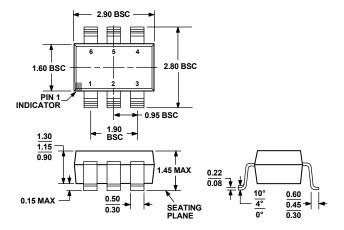


Figure 20. Off Isolation


Figure 21. Bandwidth

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 22. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-AB

Figure 23. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

ORDERING GUIDE

ONDERING GOIDE				
Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG601BRT-REEL	-40°C to +85°C	6-Lead SOT-23	RJ-6	STB
ADG601BRT-REEL7	-40°C to +85°C	6-Lead SOT-23	RJ-6	STB
ADG601BRTZ-REEL ²	-40°C to +85°C	6-Lead SOT-23	RJ-6	STB#
ADG601BRTZ-REEL7 ²	-40°C to +85°C	6-Lead SOT-23	RJ-6	STB#
ADG601BRM	-40°C to +85°C	8-Lead MSOP	RM-8	STB
ADG601BRM-REEL	-40°C to +85°C	8-Lead MSOP	RM-8	STB
ADG601BRM-REEL7	-40°C to +85°C	8-Lead MSOP	RM-8	STB
ADG601BRMZ ²	-40°C to +85°C	8-Lead MSOP	RM-8	S1G
ADG601BRMZ-REEL ²	-40°C to +85°C	8-Lead MSOP	RM-8	S1G
ADG601BRMZ-REEL7 ²	-40°C to +85°C	8-Lead MSOP	RM-8	S1G
ADG601CSURF		Die		
ADG602BRT-REEL	−40°C to +85°C	6-Lead SOT-23	RJ-6	SUB
ADG602BRT-REEL7	-40°C to +85°C	6-Lead SOT-23	RJ-6	SUB
ADG602BRTZ-REEL ²	-40°C to +85°C	6-Lead SOT-23	RJ-6	S18
ADG602BRTZ-REEL7 ²	−40°C to +85°C	6-Lead SOT-23	RJ-6	S18
ADG602BRM	-40°C to +85°C	8-Lead MSOP	RM-8	SUB
ADG602BRM-REEL	−40°C to +85°C	8-Lead MSOP	RM-8	SUB
ADG602BRM-REEL7	-40°C to +85°C	8-Lead MSOP	RM-8	SUB
ADG602BRMZ ²	-40°C to +85°C	8-Lead MSOP	RM-8	S18
ADG602BRMZ-REEL7 ²	-40°C to +85°C	8-Lead MSOP	RM-8	S18

¹ Branding on SOT-23 and MSOP is limited to three characters due to space constraints.

² Z = RoHS Compliant Part, # denotes RoHS compliant product, may be top or bottom marked.

ADG601/ADG602				
---------------	--	--	--	--

NOTES

