
 

  
 

 
 

AVR1500: Xplain training - XMEGA Basics 

Prerequisites 
• Required knowledge 

- Basic knowledge of microcontrollers and the C programming language 
• Software prerequisites 

- Atmel® AVR® Studio® 4.18 or later 
- WinAVR/GCC 20100110 or later 

• Hardware prerequisites 
- Xplain evaluation board 
- JTAGICE mkII 

• Estimated completion time: 
- 2 hours 

1 Introduction 
This Application Note covers Atmel AVR XMEGATM basics, using the IO ports to 
show various concepts in four tasks. The goal of this training is to get you started 
with small code fragments, utilizing the XMEGA header files and some of the 
XMEGA features for more efficient and compact code. 

 

 

 

 

 

8-bit   
Microcontrollers 
 
Application Note 

Rev. 8308A-AVR-06/10 

www.BDTIC.com/ATMEL



 

2 AVR1500 
8308A-AVR-06/10 

2 Writing C-code for XMEGA 
The pressure to reduce development time and at the same time ensure high quality of 
electronic products has made high-level programming languages a requirement. It is 
easier to maintain and reuse and gives better portability and readability. 

The choice of programming language alone does not ensure high readability and 
reusability; good coding style does. Therefore the Atmel XMEGA peripherals, header 
files and drivers are designed with this in mind. 

The following sub-sections will give a brief overview of some of the programming style 
that is new to XMEGA. A more detailed description is given in the application note 
“AVR1000: Getting Started Writing C-code for XMEGA”. 

2.1 Bit Masks and Bit Group Masks 
Register bits can be manipulated using pre-defined masks, or alternatively bit 
positions (which are not recommended). The pre-defined bit masks are either related 
to individual bits, called a bit mask, or a bit group. The pre-defined bit group masks 
are called group mask for short. 

A bit mask is used both when setting and clearing individual bits. A bit group mask is 
mainly used when clearing multiple bits in a bit group. 

If you are used to the ATmega or ATtiny AVR microcontrollers you would typically set 
the Event delay (EVDLY) bit similar to Example 1. 

 

Example 1. Bit position usage in standard Atmel AVR microcontroller 
TCD0.CTRLD |= (1<< EVDLY ); 

This is because the header files for those microcontrollers specify the bit position, and 
with the shift operation (<<) you create a bit mask. With the XMEGA header files this 
is more readable because both the bit positions and the bit masks are already 
defined. 

 

Example 2. Bit mask usage in XMEGA 
TCD0.CTRLD |= TC0_EVDLY_bm; // with bit mask specifier 

 

Example 3. Bit position usage in XMEGA 
TCD0.CTRLD |= (1 << TC0_EVDLY_bp); // with bit position specifier 

Using the format in example 2 is recommended, but both examples achieve setting bit 
4 to the value 1, that is, register value will be ORed with the binary value 0001 0000. 

Many configurations are controlled by a group of bits. For example; in Timer/Counter 
CTRLD register (see Figure 1) the EVACT[2:0] and the EVSEL[3:0] bits are grouped 
bits. The value of the bits in a group selects a specific configuration. The group mask 
uses the same name as the bits in the bit group and is suffixed “_gm”, while the 
position of the bit group is suffixed “_gp”. 

 

www.BDTIC.com/ATMEL



 AVR1500
 

 3

 
8308A-AVR-06/10 

Figure 1. Timer Control D register as depicted in the Atmel XMEGA A Manual 

 
The bit group mask is primarily intended for clearing old configuration of a bit group 
before writing a new value. The bit group position is useful when setting numerical 
factors, for example, multiplication factors for PLL. 

Example 4. Group mask usage 
TCD0.CTLD &= ~(TC0_EVACT_gm); // Clear group bits with group mask 

 

By looking at the mask and bit relation as they are in the XMEGA header files, we see 
what the above does: 

#define TC0_EVACT_gm  0xE0  /* Event Action group mask. */ 

#define TC0_EVACT_gp  5  /* Event Action group position. */ 

 

#define TC0_EVACT0_bm  (1<<5)  /* Event Action bit 0 mask. */ 

#define TC0_EVACT0_bp  5  /* Event Action bit 0 position. */ 

#define TC0_EVACT1_bm  (1<<6)  /* Event Action bit 1 mask. */ 

#define TC0_EVACT1_bp  6  /* Event Action bit 1 position. */ 

#define TC0_EVACT2_bm  (1<<7)  /* Event Action bit 2 mask. */ 

#define TC0_EVACT2_bp  7  /* Event Action bit 2 position. */ 

As you understand the TC0_EVACT_gm will have a binary value of 1110 0000, which is 
very useful for clearing a group of bits. 

2.2 Bit Group Configuration Masks 
It is often required to consult the datasheet to investigate what bit pattern needs to be 
used when setting a bit group to a desired configuration. This also applies when 
reading or debugging a code. To increase the readability and to minimize the 
likeliness of setting bits in bit groups incorrectly, a number of group configuration 
masks are made available. The name of a group configuration has the suffix “_gc”. 

 

Figure 2. Group configuration name composition 

 

From Figure 2 one can see that the group configuration is used for the Receive 
complete interrupt level (RXCINTLVL) bits in a USART module. This specific group 
configuration selects a high (HI) interrupt level. 

To change a bit group to a new configuration, the bit group configuration is typically 
used in conjunction with the bit group mask, to ensure that the old configuration is 
erased first. 

www.BDTIC.com/ATMEL



 

4 AVR1500 
8308A-AVR-06/10 

Example 5. 
USARTC0.CTRLA = (USARTC0.CTRLA & ~USART_RXCINTLVL_gm) | 
USART_RXCINTLVL_MED_gc; 

The example above shows group mask and configuration mask used together. The 
first part of the example (USARTC0.CTRLA & ~USART_RXCINTLVL_gm) clears the 
RCXINTLVL bits in the USARTC0 register in a similar way to what is shown in 
example 4. The last part (| USART_RXCINTLVL_MED_gc) sets the new value to get a 
medium interrupt level. 

This code is used to reconfigure USARTC0 Receive Complete Interrupt level to 
medium, without affecting the other bits in the register. You will see code similar to 
this in a lot of the drivers that comes with the different application notes. 

2.3 Module registers and addresses 
The IO map in the Atmel XMEGA is organized so that all registers for a given 
peripheral module are placed in one continuous memory block. This makes it possible 
to organize all peripheral modules in C structs, where the address of the struct 
defines the base address of the module. All registers belonging to a module are 
elements in the module struct. 

The following code shows how the different registers for the Programmable Multilevel 
Interrupt Controller (PMIC) is defined in the XMEGA header files. 

 

Example. Definition from XMEGA header file (iox128a1.h): 
typedef struct PMIC_struct 

{ 

    register8_t STATUS; /* Status Register */ 

    register8_t INTPRI; /* Interrupt Priority */ 

    register8_t CTRL; /* Control Register */ 

} PMIC_t 

 

This code defines the registers available in the PMIC module. The struct is used to 
define the PMIC at a specific memory address. 

 

Example. Peripheral module definition: 
#define PMIC      (*(PMIC_t *) 0x00A0) 

The example above shows how the module instance definition uses a de-referenced 
pointer to the absolute address in the memory, coinciding with the module instance 
base address. The module pointers are pre-defined in the XMEGA header files, it is 
therefore not necessary to add these definitions in the source code. 

 

If the examples above do not make sense to you, don’t worry. 

What you need to know is how to use these definitions. With the above definitions, 
which are part of the XMEGA header files, you can access any registers within a 
module with the “.” (dot) syntax, as shown in the following example: 

 

www.BDTIC.com/ATMEL



 AVR1500
 

 5

 
8308A-AVR-06/10 

Example usage 
Unsigned char temp; 

Temp = PMIC.STATUS; // Read status register into temp 

PMIC.CTRL |= PMIC_PMRRPE_bm; // Set PMRRPE bit in control register 

 

The main advantage of using the Module registers and the Module addresses shown 
above is the ability to create drivers that are independent of the actual peripheral (for 
example works for both USART 1 and USART 4) and between different parts of the 
Atmel XMEGA family. 

3 Overview 
Here is a short overview of the tasks in this training: 

This training covers XMEGA basics, using the IO ports to show various concepts in 
four tasks. The goal of this training is to get you started with small code fragments, 
utilizing the XMEGA header files and some of the XMEGA features for more efficient 
and compact code. 

Task 1. Basic LED Control 

This task shows how to use #defines and module names from the XMEGA header 
files to create portable code and how to manipulate IO ports. 
 
Task 2. Generic Drivers 

This task shows how to use pointers to peripheral module to make generic driver 
code and how to read switches and output to LEDs. 
 
Task 3. Output and Pull Configuration 

This task shows how to use the XMEGA header files with its group mask and group 
configuration values to efficiently modify bit fields within registers. 
 
Task 4. Multi Configuration 

This task shows how to use the multi configuration register to configure more than 
one pin at a time. 
 
Good luck! 

www.BDTIC.com/ATMEL



 

6 AVR1500 
8308A-AVR-06/10 

4 Task 1: Basic LED Control 
Nothing is more fun than having blinking LEDs on your development board! This task 
does just that, and nothing else. It shows how to utilize the Atmel XMEGA header file 
format to make code that is easy to customize. It also shows some of the features of 
the XMEGA IO ports. 

The goal for this task is that you know how to: 

• Change the port to use for LEDs with only one #define 
• Configure IO pin directions and set output values 
• Change existing port output values with only one single write access 
 
1. Start Atmel AVR Studio and open the project file BasicLED_Control.aps. Then take 

a look at task1.c, see Figure 3 
 
2. Figure 4 shows how easy it is to change LEDPORT definition if you want another 

LED port 
 

Figure 3. Open the Project 

 
Figure 4. Changing the LED port 

 
 

3. Connect the JTAGICE mkII to the XMEGA JTAG header in the top right corner of 
the Xplain evaluation board. Connect the JTAGICEmkII to the computer with the 
USB cable and switch it on. Then connect the Xplain board to the computer with 
the corresponding USB cable 

www.BDTIC.com/ATMEL



 AVR1500
 

 7

 
8308A-AVR-06/10 

 

4. Build the project (press F7), see Figure 5 
 
5. Start debugging by pressing the Play button, see Figure 6 

Figure 5. Build project (F7) 

 
 

Figure 6. Start Debugging 

 
 

6. Open the I/O view (Alt + 5) for the LED-port, see Figure 7. Note that there are quite 
many registers that deal with the IO port pins. The registers are making the code 
more compact and they are offering more options to the developer 

 

www.BDTIC.com/ATMEL



 

8 AVR1500 
8308A-AVR-06/10 

Figure 7. Registers in ledPort 

 

 
7. Single-step through the code (press F11) and observe the LEDs in the I/O view 

and on the target board, see Figure 8 
 
8. Try to understand the different port registers, SET, CLR, TGL as you single step 

(F11) and look in the I/O view 
 
9. Run the code (press F5) to see the final part of the code blink the LEDs 

Figure 8. Start single stepping (F10) 

 
 

 

 

www.BDTIC.com/ATMEL



 AVR1500
 

 9

 
8308A-AVR-06/10 

5 Task 2: Generic Drivers 
Ever wanted one function that can access any IO port (or any ADC, or any DAC, or 
any Timer/Counter…) without having to use switch/case or if-else statements 
to select the correct registers? This task shows how to utilize the layout of the Atmel 
XMEGA IO map to make code that takes a pointer to an IO port module and uses 
generic code to access the correct registers. This method can be used to create 
generic driver code for IO ports, ADCs, DACs, Timer/Counters etc. 

 

The goal for this task is that you know how to: 

• Create a pointer variable and make it point to any IO port module 
• Use module pointers as function parameters 
• Access module registers through module pointers 
 
1. In the project folder for Task 2, start the project file Generic_Drivers.aps and 

then take a look at the task2.c. 
 
2. Observe that the ledPort and switchPort pointer assignments easily can be 

changed if you want to use other ports for LEDs and switches 
 
3.  Build the project (F7) 
 
4. Start debugging 
 
5. Single-step into the code (press F11) and observe the LEDs. Try pressing different 

switches when inside the GetSwitches function 
 
6. Run code (press F5) to see the code copy switch states to LEDs real-time 
 

Figure 9. Single step the functions 

 
 
 
 

www.BDTIC.com/ATMEL



 

10 AVR1500 
8308A-AVR-06/10 

6 Task 3: Output and Pull Configuration 
With Atmel XMEGA, all configuration options for all bit fields of all modules are 
available as named constants in one header file (for example the iox128a1.h). This 
task shows how to use group mask and group configuration values from header files, 
how to find them in datasheets and how to use them in an efficient and compact way 
in your code. Also, this task gives insight into some of the features of the XMEGA IO 
ports. 

 
The goal for this task is that you know how to: 

• Write efficient and compact code to modify bit fields within a register 
• Be able to find and use group mask and group configuration values from 

datasheets and header files 
• Know about different output and pull configurations of the XMEGA IO ports 
 

1. In Atmel AVR Studio, open the project file OutPutAndPull.aps from the 
Basic_LED_Control folder. Take a look at the file task3.c. 

 
2. Build the project, press F7, and start a debug section 
 
3. Open the XMEGA A manual and locate the PINnCTRL register configuration. Look 

at the Output and Pull Configuration (OPC) values in the Register description 
section 

 
4. In the build-tree, expand the External Dependencies and open iox128a1.h, see 

Figure 10. Can you find the PORT_OPC_WIREDAND_gc OPC configuration? 
(Hint: search for “wired”) 

 
5. In task3.c, locate and single step to this line: 

SWITCHPORT.PIN0CTRL = (SWITCHPORT.PIN0CTRL & ~PORT_OPC_gm) | 
PORT_OPC_WIREDANDPULL_gc; 
 

Refer to Chapter 2.2 and try to understand the bit configuration mask above. (The 
wired-and configuration will be detailed in the next task) 

6. Single-step further while looking at the I/O view. Compare with the register 
description configurations in the manual, and verify the OPC configurations 

www.BDTIC.com/ATMEL



 AVR1500
 

 11

 
8308A-AVR-06/10 

Figure 10. Open iox128a1.h 

 

7 Task 4: Multi Configuration 
In the previous task you learned that there is one configuration register for each I/O 
pin. What if you want to configure several pins at once? With Multi Configuration, 
several pins in a port can be configured at the same time. 

Having configuration registers for each pin means that the number of operations 
necessary for configuring a single port increases. The number of write operations is 
reduced by the introduction of a global Multi-pin Configuration Mask (MPCMASK) 
register that is common for all ports. MPCMASK can be used to set a bit mask for the 
pin configuration registers. When setting bit n in MPCMASK, PINnCTRL is added to 
the pin configuration mask. During the next write to any of the port's pin configuration 
registers, the same value will be written to all the port's pin configuration registers set 
by the mask. The MPCMASK register is cleared automatically after the write 
operation to the pin configuration registers is finished. 

This task will also demonstrate one of the Output Pull Configurations (OPC), the 
Wired And Pull. The figure below illustrates two microcontrollers (MCUs) connected 
together and an external pull-up. In the table below the figure you see how the I/O pin 
drivers respond depending on the value of the OUT register. 

In this task we have only one microcontroller so we are going to connect two pins 
together with a jumper, and use the internal pull-ups. 

 

www.BDTIC.com/ATMEL



 

12 AVR1500 
8308A-AVR-06/10 

Figure 11. Typical Wired-And usage 

R

 

I/O port behavior when Wired-AND is configured: 

OUT-register IO pin output 

0 Pulled low (0) 

1 Tri-state 

 

The goal for this task is that you know how to: 

• Use the Multi-pin Configuration Mask register 
• Understand more about the output and pull configurations of the Atmel XMEGA IO 

ports 
• Understand the specific Wired-And example 
 

1. Open the project file MultiConfiguration.aps and have a look at task4.c in 
AVR Studio 

 
2. Use a jumper to connect PD0 and PD1 on PORTD 
 
3. Build the project and start debugging in Atmel AVR Studio 
 
4. Add a break-point before the while-loop as shown in Figure 12 and press F5 to run. 

To place a break-point, place the cursor at the code-line you want the break-point 
and press F9 

 

www.BDTIC.com/ATMEL



 AVR1500
 

 13

 
8308A-AVR-06/10 

Figure 12. Add a break-point before the while(1)-loop 

 

5. Open the I/O view and look at the TESTPORT (e.g. PORTD) register view. What 
happens to the PINnCTRL pins when you now single step (F10)? 

 
6. Let’s look at what the Wired-AND setting does. The code sets both Pin0 and Pin1 

high and check what the result is in the IN register. Afterwards it sets Pin0 low and 
then checks the result in the IN register for Pin1 

 
7. Single step the while-loop and observe the TESTPORT.IN register in the I/O view. 

What happens with Pin1 IN value when Pin0 is set low? 
 
8. Please note that if you connect two pins together (that is short-circuit) and 

configure one pin high and the other low, both pins with the normal configuration 
the pin output drivers will drive in different directions and you will get a strong 
current flowing between the pins. When using the Wired-AND configuration as the 
example shows this is avoided 

 

www.BDTIC.com/ATMEL



 

14 AVR1500 
8308A-AVR-06/10 

Figure 13. Driving Pin0 low drives Pin1 low 

 

9. Remove the jumper from PORTD 

8 Summary 
Here are some of the main features/functionalities you have learned during this 
session: 

• Writing C-code for Atmel XMEGA 
• Basic Port configuration 
• Making generic drivers 
• Output And Pull Configuration 
• Multi-configuration of pins 
• Wired-And 

9 Resources 
• XMEGA Manual and Datasheets 

o http://www.atmel.com/xmega 
• Atmel AVR Studio with help files 

o http://www.atmel.com/products/AVR/ 
• WINAVR GCC compiler 

o http://winavr.sourceforge.net/ 
• Atmel IAR Embedded Workbench® compiler 

o http://www.iar.com/ 
 
 

www.BDTIC.com/ATMEL



 AVR1500
 

 15

 
8308A-AVR-06/10 

10 Atmel Technical Support Center 
Atmel has several support channels available: 

o Web portal: http://support.atmel.no/ All Atmel microcontrollers 
o Email:  avr@atmel.com  All Atmel AVR products 
o Email:  avr32@atmel.com All 32-bit AVR products 

 

Please register on the web portal to gain access to the following services: 

o Access to a rich FAQ database 
o Easy submission of technical support requests 
o History of all your past support requests 
o Register to receive Atmel microcontrollers’ newsletters 
o Get information about available trainings and training material 

 

www.BDTIC.com/ATMEL



 

8308A-AVR-06/10 

 
 

Disclaimer 
Headquarters  International   

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 

 Atmel Asia 
Unit 1-5 & 16, 19/F 
BEA Tower, Millennium City 5
418 Kwun Tong Road 
Kwun Tong, Kowloon 
Hong Kong 
Tel: (852) 2245-6100 
Fax: (852) 2722-1369 

 
 
 
 
 
 
Product Contact 

 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en-
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11 

 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 
 

 Web Site 
www.atmel.com 

 

Technical Support 
avr@atmel.com 

 

Sales Contact 
www.atmel.com/contacts 
 
 
 

 Literature Request 
www.atmel.com/literature 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, 
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 
© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio® and others, are 
the registered trademarks, XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may 
be trademarks of others. 

 

www.BDTIC.com/ATMEL


	Prerequisites
	1 Introduction
	2 Writing C-code for XMEGA
	2.1 Bit Masks and Bit Group Masks
	2.2 Bit Group Configuration Masks
	2.3 Module registers and addresses

	3 Overview
	4 Task 1: Basic LED Control
	5 Task 2: Generic Drivers
	6 Task 3: Output and Pull Configuration
	7 Task 4: Multi Configuration
	8 Summary
	9 Resources
	10 Atmel Technical Support Center
	Disclaimer



