

AVR1502: Xplain Training - Direct Memory
Access Controller

Prerequisites
• Required knowledge

 AVR1500: Xplain Training - XMEGA™ Basics
• Software prerequisites

 Atmel® AVR® Studio® 4.18 or later
 WinAVR/GCC 20100110 or later

• Hardware prerequisites
 JTAGICE mkII
 Xplain evaluation board

• Estimated completion time:
 2 hours

1 Introduction
This application note covers the basic features of the Atmel XMEGA Direct Memory
Access Controller (DMAC). The goal for this training is to getting started with
simple memory transfers almost without using CPU time, and reading and writing
to peripherals with hardly any CPU intervention.

There are four DMA channels that have individual source, destination, triggers and
block sizes. The DMA Controller can move data from one memory area to another,
between memories and peripherals and between peripherals.

8-bit
Microcontrollers

Application Note

Rev. 8310A-AVR-06/10

www.BDTIC.com/ATMEL

2 AVR1502
8310A-AVR-06/10

2 Setting up the DMA Controller
The Atmel XMEGA Direct Memory Access Controller (DMAC) is a highly flexible four-
channel DMA Controller capable of transferring data between memories and
peripherals with minimal CPU intervention. While the CPU spends time in low-power
sleep modes or performs other tasks, the XMEGA DMAC offloads the CPU by taking
care of mere data copying from one area to another. The following sub-chapters are
meant to complement the understanding when doing the tasks in this training.

2.1 DMA Transaction
A complete DMA read and write operation between memories and/or peripherals is
called a DMA transaction. A transaction is done in data blocks and the size of the
transaction (number of bytes to transfer) is selectable from software and controlled by
the block size and repeat counter settings. Each block transfer is divided into smaller
bursts, see Figure 2-1.

Figure 2-1. DMA Transaction

When a DMA channel requests a data transfer, the bus arbiter will wait until the AVR
core is not using the data bus and permit the DMA Controller to transfer data.
Transfers are done in bursts of 1, 2, 4 or 8 bytes. Addressing can be static,
incremental or decremental. Automatic reload of source and/or destination address
can be done after each burst transfer, block transfer, when transfer is complete, or
disabled. DMA transfers can be triggered by application software, peripherals and
events.

The size of the block transfer is set by the Block Transfer Count Register, and can be
anything from 1 byte to 64 Kbytes. A repeat counter can be enabled to set a number
of repeated block transfers before a transaction is complete. The repeat is from 1 to
255 and unlimited repeat count can be achieved by setting the repeat count to zero.

A bus arbiter controls when the DMA controller and the AVR core can use the bus.
The core always has priority, so as long as the core request access to the bus, any
pending burst transfer must wait. The core requests bus access when it executes an
instruction that write or read data to SRAM, IO memory, EEPROM and the External
Bus Interface.

2.2 Addressing
If the source or destination is SRAM, the user will most likely want to increment or
decrement the address pointer. Therefore, it is possible to set the DMAC source /
destination in incremental or decremental mode.

www.BDTIC.com/ATMEL

 AVR1502

 3

8310A-AVR-06/10

SRAM
Address

 Value

0x2066 34

0x2067 76

0x2068 13

0x2069 113

In incremental mode, the DMAC will start at the source address. After the first byte
has been sent, the next byte will be read from the previous address plus one.

In decremental mode, it is opposite, where the DMAC will start at a given source
address and proceed with the previous addresses.

The original source and destination addresses are stored by the DMA controller, so
that the source and destination addresses can be individually configured to be
reloaded at the following points:

• End of each burst transfer
• End of each block transfer
• End of transaction
• Never reload
When using the DMAC with a peripheral, such as the SPI, the data register is fixed,
and it is important that the addressing mode is static.

2.3 Transfer Triggers
The main purpose of the DMA triggers is to synchronize the peripherals with the
transfer rate. For instance, when using the USART and transferring at 9600 baud, the
DMA should not be triggered more often than the transfer complete flag is set.

DMA transfers can only be started when a DMA transfer request is detected. A
transfer request can be triggered from software, from an external trigger source
(peripheral) or from an event. There are dedicated source trigger selections for each
DMA channel. The available trigger sources may vary from one device to another,
depending on the modules or peripherals that exist in the device (see the XMEGA
manual for different transfer triggers).

2.4 Interrupts
The DMA Controller can generate interrupts when an error is detected on a DMA
channel or when a transaction is complete for a DMA channel. Each DMA channel
has a separate interrupt vector, and there are different interrupt flags for error and
transaction complete. If repeat is not enabled the transaction complete flag is set at
the end of the Block Transfer. If unlimited repeat is enabled, the transaction complete
flag is also set at the end of each Block Transfer.

The DMAC will increment the
address pointer automatically in
incremental mode

www.BDTIC.com/ATMEL

4 AVR1502
8310A-AVR-06/10

3 Overview
Here is a short overview of the tasks in this training:

Task 1: Memory Copy

This task shows how to copy blocks of memory from one location to another without
CPU intervention. The task is divided in two parts.

1. The first part will show how to copy memory in SRAM with the DMAC
2. The second part will show how to set up an interrupt to indicate that the transfer is

done

Task 2: Interrupt mode

This task shows how to implement a simple recorder that records a ten second
sequence of switch presses and plays them back on the LEDs. The recording and
playback process is performed without CPU intervention.

4 Task 1: Memory copy
DMA controllers are perfect for copying large chunks of memory from one location to
another. This task will demonstrate the block memory copy routine from the driver file.
It will also show how to set up the PMIC to get interrupt when the transfer is done.

The goal for this task is that you know how to:

• Use the driver code to set up the DMAC and start memory copy operations
• Set up the PMIC to trigger an interrupt when the transfer is done

4.1 Memory Copy: Polling approach
1. Open the project file MemoryCopy.aps in Atmel AVR Studio, and see the file

task1.c
2. Build the project (press F7) and start debugging (click on Play)
3. Locate the memoryBlockA and memoryBlockB definitions and add data watches for

both of them (“Add watch…” in right-click menu), see Figure 4-1

www.BDTIC.com/ATMEL

 AVR1502

 5

8310A-AVR-06/10

Figure 4-1. Locate memory blocks at top of task1.c

4. In main(), right-click on the call to MemCopy and select ”Run to Cursor” in the right-
click menu, see Figure 4-2

5. Expand memoryBlockA and memoryBlockB in the watch window and look into their
contents. Are they equal? See Figure 4-3

Figure 4-2. Run to cursor

Figure 4-3. Compare memoryBlockA and memoryBlockB

6. Step Over (F10) the call to MemCopy and look onto the contents of memoryBlockA
and memoryBlockB again. Are they equal now?

www.BDTIC.com/ATMEL

6 AVR1502
8310A-AVR-06/10

7. Reset execution (Shift-F5) and run to MemCopy again. This time step into (press
F11) to access the function. Further, step into DMA_SetupBlock to see how the
driver configures the DMAC for you. You may want to refer to the introduction
chapter in order to answer these questions:

a) Is the memory copy set up as static, incrementing or decrementing? Why
is it set up this way?

b) Could another DMA channel have been used?
c) The software trigger source is used as default for this between memories

transfer. Why do you think this is convenient when copying from SRAM to
SRAM?

d) What is the burst length? Why do you think it is configurable?

4.2 Memory Copy: Interrupt approach
1. Add a break-point to the start of test two, as shown in Figure 4-4. And press F5 to

run

Figure 4-4. Add break point here

2. If the previous test went fine (no errors in the transfer), then we are ready for the
next test. Single-step (press F10) some steps and notice that an interrupt is set up
to trigger when the next DMA transaction has completed

3. Look at the function AsyncMemCopy. Notice that, in comparison with MemCopy, there
is no call to DMA_ReturnStatus_non_blocking

The function DMA_ReturnStatus_blocking is polling until the DMA transfer has
finished. When using an interrupt instead to indicate that the transfer has finished, the
CPU will be free to do other operations.

4. At the bottom of task1.c, add a break-point in the interrupt service routine

ISR(DMA_CH0_vect), as shown in Figure 4-5. Press F5 to run

www.BDTIC.com/ATMEL

 AVR1502

 7

8310A-AVR-06/10

Figure 4-5. Wait for interrupt

5. Run to completion (press F5) and break execution (Ctrl+F5) after a while. Verify
that the transfer went well by comparing memoryBlockA and memoryBlockB

5 Task 2: Recorder
An application, for which the DMAC is really useful, is to copy data between memory
and peripherals such as ADCs and DACs. This task shows how to implement a
simple recorder that samples the switches for a period of time, stores it in a SRAM
buffer, and then plays the data back on the LEDs over and over again. The exact
same principle would be used if you should record sound with an ADC and play it
back on a DAC.

The goal for this task is that you know how to:
• Configure the DMAC to copy data from peripheral to SRAM
• Configure the DMAC to copy data from SRAM to peripheral
• Use a timer tick as a trigger source for DMA data transfers

1. Open the project file DMA_Recorder.aps in the task2 folder in Atmel AVR Studio
and have a look at task2.c

2. Build the project (press F7), start debugging (click on Play), and run code (press
F5) to use the recorder:

a) The LEDs flash once
b) Press any switch
c) The LEDs flashes again
d) You have approximately 10 seconds to hammer at the switches while the

DMAC records the switch states
e) The LEDs flashes again
f) Press any switch
g) The LEDs flashes again
h) The DMAC will play back the switch recording on the LEDs until a switch is

pressed
i) The procedure starts over

3. Try changing the SAMPLE_COUNT definition or the sample rate. Recompile, run,
and see what happens. See Figure 5-1

www.BDTIC.com/ATMEL

8 AVR1502
8310A-AVR-06/10

Figure 5-1. Try changing SAMPLE_COUNT

4. Try to walk through the code to understand what happens. You may refer to the
introduction chapter when answering theses questions:

a) In the SetupReadChannel, what is the source and what is the destination?
b) In the SetupWriteChannel, what is the source and what is the destination?
c) What would happen if you set the DMAC up with software trigger source, in

this case?
d) For the Read-channel, why are the source address fixed and the destination

address incremental?
e) Could the burst-length have been different, such as 4 or 8?

www.BDTIC.com/ATMEL

 AVR1502

 9

8310A-AVR-06/10

6 Summary
• Memory copy; DMAC from SRAM to SRAM
• Using interrupt source to indicate end of transfer
• Recording switch presses using DMAC. This application recorded the port pin

input states and saved the information in SRAM. The information that was saved
in SRAM was then set out to the LEDs. A timer overflow was used as a trigger
source

7 Resources
• Atmel XMEGA Manual and Datasheets.

o http://www.atmel.com/xmega
• Atmel AVR Studio with help files

o http://www.atmel.com/products/AVR/
• WINAVR GCC compiler

o http://winavr.sourceforge.net/
• Atmel IAR Embedded Workbench® compiler

o http://www.iar.com/

8 Atmel Technical Support Center
Atmel has several support channels available:

• Web portal: http://support.atmel.no/ All Atmel microcontrollers
• Email: avr@atmel.com All AVR products
• Email: avr32@atmel.com All 32-bit AVR products

Please register on the web portal to gain access to the following services:

• Access to a rich FAQ database
• Easy submission of technical support requests
• History of all your past support requests
• Register to receive Atmel microcontrollers’ newsletters
• Get information about available trainings and training material

www.BDTIC.com/ATMEL

8310A-AVR-06/10

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo AVR Studio® and others, are
the registered trademarks, XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may
be trademarks of others.

www.BDTIC.com/ATMEL

	Prerequisites
	1 Introduction
	2 Setting up the DMA Controller
	2.1 DMA Transaction
	2.2 Addressing
	2.3 Transfer Triggers
	2.4 Interrupts

	3 Overview
	4 Task 1: Memory copy
	4.1 Memory Copy: Polling approach
	4.2 Memory Copy: Interrupt approach

	5 Task 2: Recorder
	6 Summary
	7 Resources
	8 Atmel Technical Support Center
	Disclaimer

