

AVR1507: Xplain training - XMEGA Crypto
Engines

Prerequisites
• Required knowledge

Use of Atmel® AVR® Studio®
Atmel XMEGA™ Basics C training

• Required Software
Atmel AVR Studio latest version
WinAVR latest version
XMEGA-Crypto training files

• Required Hardware
Xplain Evaluation board
JTAGICE mkII w/latest firmware

• Estimated completion time
1.5 hours

1 Introduction
This training will focus on practical implementation of the mentioned encryption
algorithms, and explain how to easily implement them using Atmel XMEGA’s
powerful hardware support. Details of the mathematics behind the DES and AES
algorithms are beyond the scope of this training and will not be covered.

Figure 1-1. DES and AES Flowcharts

8-bit
Microcontrollers

Application Note

Rev. 8316A-AVR-06/10

INITAL PERMUTATION

+ f

64

32 32

32

32

3248

INPUT

L0 R0
K1

32

+ f

R1
K2

L 1= R0

+ f

K16
L15= R14

INVERSE INITAL PERMUTATION

64

OUTPUT

15L16 = R

R15

R16

Add Round Key

Inverse Shift Rows

Inverse Substitute
Bytes

Add Round Key

Inverse Mix Columns

Ready for the
last round ?

Inverse Shift Rows

Inverse Substitute
Bytes

Add round key

Decrypt Block

Return

No

Yes

Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Ready for the
last round ?

Substitute Bytes

Shift Rows

Add Round Key

Encrypt Block

Return

No

Yes

www.BDTIC.com/ATMEL

2 AVR1507
8316A-AVR-06/10

2 Crypto Overview
This section provides an overview of the basic Crypto configuration options and
functionality in the Atmel XMEGA.

2.1 DES – Data Encryption Standard
The XMEGA has an additional instruction added to the instruction set; the DES
instruction. This instruction uses key data stored in General Purpose register R8 -
R16 as a key to encrypt or decrypt the data stored in register R0 - R7. Executing one
DES instruction performs one round in the DES algorithm. The DES algorithm uses
16 stages, thus 16 DES instructions must be executed in increasing order to form the
correct DES ciphertext or plaintext. Valid arguments to the DES instruction are
numbers in the range 0x00 to 0x0F, but will only output correct result if used in the
correct sequence, that is: 0x00, 0x01, …. , 0x0E, 0x0F.

2.1.1 DES Encryption

Encrypting data using the DES algorithm is very simple on the XMEGA, and does not
require the user to know anything about the mathematics and operation of the
encryption method.

The practical implementation relies on 4 steps only:

Figure 2-1. Registers used for encrypting

1. Load plaintext data into registers R0-R7
2. Load key data into registers R8-R15
3. Clear “H” Flag in SREG
4. Execute 16 DES instructions DES 0x00-DES 0x0F
The ciphertext will now be available in registers R0..R7. While the DES instruction is
not directly supported by compilers at this time, an assembly library that performs the
correct DES encryption and decryption is supplied with this application note and is
ready for use in application software written in C or assembly.

www.BDTIC.com/ATMEL

 AVR1507

 3

8316A-AVR-06/10

2.1.2 DES Decryption

Decrypting data width the DES algorithm is just as simple as encrypting. The same
steps apply, only this time the “H” flag in SREG must be set:

1. Load ciphertext data into registers R0-R7
2. Load key data into registers R8-R15
3. Set “H” Flag in SREG
4. Execute 16 DES instructions DES 0x00-DES 0x0F

Figure 2-2. Registers used for decryption

The plaintext data is now available in registers R0 - R7.

2.2 AES – Advanced Encryption Standard
Unlike the DES instruction, The AES is a hardware module with data registers, control
and status registers. It can also generate interrupts when a conversion is completed.

The module contains:

1. Control Register CTRL, used for resetting the module, starting a conversion, select
encrypting/decrypting and whether XOR mode is to be used when loading data to
the state memory.

2. Status Register STATUS, contains the flags; ERROR and SRIF (short for State
Ready Interrupt Flag). ERROR is set if the STATE or KEY registers while the
START bit is set. It is also set if a conversion is started when the memories are not
fully read or written. SRIF is set when a conversion is complete

3. Key Memory. 16 bytes of memory accessed through the KEY register
4. State Memory. 16 bytes of memory accessed through the STATE register
5. Interrupt Control Register (INTCTRL) used to enable and set interrupt level

www.BDTIC.com/ATMEL

4 AVR1507
8316A-AVR-06/10

Figure 2-3. AES Module

STATE

15

14

13

12

1

0

write ptr

read ptr

KEY

15

14

13

12

1

0

write ptr

read ptr

XOR INTCTRL

CTRL

STATUS

More information about the AES module and the registers involved can be found in
the XMEGA manual.

www.BDTIC.com/ATMEL

 AVR1507

 5

8316A-AVR-06/10

3 Overview
This hands-on session covers some of the basic Atmel XMEGA Crypto features:

Task 1: DES encryption and decryption

This task shows how to use the DES application note library to encrypt and decrypt a
simple message.

Task 2: 3DES encryption and decryption

This task shows how to use Triple DES. We will use the 3DES library function, but
also make our own 3DES using three normal DES calls.

Task 3: AES encryption and decryption

This task shows how easy it is to use the AES functions to control the AES module,
and encrypt and decrypt a message. We will also look at the number of cycles it takes
to encrypt and decrypt a message using AES.

Task 4: AES and CBC

This task will add CBC to the AES encryption. In this task you need to look up the
functions in the AES library file to find out the correct syntax. We will also look at the
number of cycles it takes to encrypt and decrypt a message using CBC AES, and
compare with the previous task.

• This pictogram indicates optional tasks and questions. Answers will be given in the
wrap-up session at the end of this training.

www.BDTIC.com/ATMEL

6 AVR1507
8316A-AVR-06/10

4 Task 1: DES encryption and decryption
This task will introduce you to the DES application note and how to use its library
functions to quickly implement DES encryption and decryption in applications.

The goal for this task is that you know how to:

• Use the application note library functions for DES encryption and decryption
• See what happens if decrypting with slightly different key than used to encrypt
• Find out which of the 64-bit code is used as parity bits

1. In Atmel AVR Studio, open the project DES.aps and look at the file task1.c

In this task we will use three strings to store in-data, out-data and cipher-data. This
allows for a simple check to make sure that the decrypted message is identical to in-
data.

Note that two DES key strings are defined. This is done to allow a simple method to
decrypt the message with a slightly different key than the encryption key to see how
this affects the output.

2. Study the code and get familiar with the structure

All the program does is encrypt a message, decrypt it and verify that the input and
output is the same.

3. Build and run the code in AVR Studio and verify that in-data and out-data are
indeed the same

4. Try changing one of the values in the decryptkey values and see how this affects
the decryption

• The DES standard uses only 56 bit as the actual key. 8 bits in the decryptkey is
used for parity check. Find out where these parity bits are located within the 64-bit
decryptkey
HINT: Toggling these bits will not affect the output from the DES decryption

algorithm.

www.BDTIC.com/ATMEL

 AVR1507

 7

8316A-AVR-06/10

5 Task 2: 3DES Encryption and Decryption
Traditional DES encryption is 56-bit and although it provides good security this is no
longer recommended for highly secure applications. Triple Data Encryption Standard
(3DES), which is based on using DES three times, increases the key strength from 56
bits to 168 bits. This makes it much more secure, but also slower, as you are in fact
executing three operations on each data block.

The goal for this task is that you know how to:

• Use the application note 3DES library functions to encrypt and decrypt a message
• Use the DES library to “manually” make a 3DES implementation

1. Open the project 3DES.aps and take a look at the Task2.c

The code use the functions provided by the DES application note.

2. Try to understand the code in Task2.c. Then compile and run it. Use the watch
window to keep an eye on cipher-data and out-data after running the code

Since 3DES is based on running DES three times, your task is to implement 3DES
using the DES functions from the previous task. 3DES encryption is done by an
encryption step followed by a decryption step and then a final encryption step. Each
step uses its own key.

3. In the main function you will see the DEC_Encrypt and DEC_Decrypt function calls.
Verify that they are placed in the correct order for decrypting

4. Insert the missing parameters. You may use the code in the previous task as a
reference

5. Verify that the data decoded by the DES_Encrypt and DES_Decrypt functions are
equal to the initial in-data and also the data decrypted from the DES_3DES_Encrypt
and DES_3DES_Decrypt functions

• Is the number of cycles needed to execute the DES_3DES_Encrypt three times
more than for the DES_Encrypt function?

www.BDTIC.com/ATMEL

8 AVR1507
8316A-AVR-06/10

6 Task 3: AES encryption and decryption
In this task we will look at the AES module and how to use the software library in
Application Note AVR1318 to implement AES encrypting and decrypting.

The goal for this task is that you know how to:

• Use the application note AVR1318 AES library functions to encrypt and decrypt a
message

• Know which key to use for both encryption and decryption
• Measure how many clock cycles are needed to execute an AES encoding and

decoding

1. Open the project AES.aps and take a look at the task3.c. Look through the code
and familiarize yourself with the functions used

2. Compile and run the program

3. Add watches to the variables indata, cipherdata, outdata, aeskey and
lastsubkey

4. Step through the program and look at how the content of the variables change

Since the AES is a hardware module, the AES software can easily be written in C
without any inline assembly or calls to assembly functions. You may have noticed that
single stepping into the functions in the DES code in the previous tasks was
impossible. The reason for this is that these are written in assembly, and Atmel AVR
Studio / GCC do not allow single stepping into such assembly functions.

5. In the Processor view you will see that there is a Cycle Counter which seems not to
be working. This because the JTAGICE mkII does not support this feature. We do,
however, want to measure the number of cycles it takes to do an AES encryption
and decryption. To do this we will temporarily change debug platform. In the
“Debug” menu, select “Platform and device”, and choose to use “Simulator 2”
instead of “JTAGICE mkII” for debugging. Simulator 2 is a cycle accurate simulator.

6. Measure how many cycles the encryption and decryption takes. Note that it is
possible to reset the cycle counter by right clicking it

• What is the purpose of the AES_lastsubkey_generate() function?
• Why is Cycle Counting not possible on JTAGICE mkII (or Atmel AVR Dragon)?

www.BDTIC.com/ATMEL

 AVR1507

 9

8316A-AVR-06/10

7 Task 4: Using AES in CBC mode
Abstract:

In the cipher-block chaining (CBC) mode, each block of plaintext is XORed with the
previous ciphertext block before being encrypted. This way, each ciphertext block is
dependent on all plaintext blocks processed up to that point. Also, to make each
message unique, an initialization vector must be used in the first block.

In this task we will look at how CBC (Cipher Block Chaining) can be implemented.

The goal for this task is that you know how to:

• Look up the driver file and find the syntax of its functions
• Encrypt three message blocks using CBC mode
• Decrypt the same three message blocks using CBC

In the previous tasks all code has already been written. This is no longer the case.
Most of the code is provided, but you need to put it enter the arguments for the
encryption and decryption functions, and make sure the correct arguments are
passed to each function call.

1. Open the project CBC.aps and take a look at the task4.c. Try to roughly
understand the code

2. In the main()-function, we have two function calls that are not complete. Complete
with code for the encryption and decryption routine. Compile and run the code

3. Change to Simulator and measure the number of cycles the encryption and
decryption function uses

• Can you explain the difference in cycles used for encoding and decoding?

8 Summary
In this hands-on training we have seen how easy it is to implement DES and AES
encryption in your applications. No knowledge of the algorithm is needed to be able to
take full advantage of these features!

www.BDTIC.com/ATMEL

10 AVR1507
8316A-AVR-06/10

9 Resources
• Atmel XMEGA Manual and Datasheets.

o http://www.atmel.com/xmega
• Atmel AVR Studio with help files

o http://www.atmel.com/products/AVR/
• WINAVR GCC compiler

o http://winavr.sourceforge.net/
• Atmel IAR Embedded Workbench® compiler

o http://www.iar.com/

10 Atmel Technical Support Center
Atmel has several support channels available:

• Web portal: http://support.atmel.no/ All Atmel microcontrollers
• Email: avr@atmel.com All Atmel AVR products
• Email: avr32@atmel.com All 32-bit AVR products

Please register on the web portal to gain access to the following services:

• Access to a rich FAQ database
• Easy submission of technical support requests
• History of all your past support requests
• Register to receive Atmel microcontrollers’ newsletters
• Get information about available trainings and training material

www.BDTIC.com/ATMEL

8316A-AVR-06/10

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio® and others, are
the registered trademarks, XMEGA™ and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may
be trademarks of others.

www.BDTIC.com/ATMEL

	Prerequisites
	1 Introduction
	2 Crypto Overview
	2.1 DES – Data Encryption Standard
	2.1.1 DES Encryption
	2.1.2 DES Decryption

	2.2 AES – Advanced Encryption Standard

	3 Overview
	4 Task 1: DES encryption and decryption
	5 Task 2: 3DES Encryption and Decryption
	6 Task 3: AES encryption and decryption
	7 Task 4: Using AES in CBC mode
	8 Summary
	9 Resources
	10 Atmel Technical Support Center
	Disclaimer

