
XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 1

© 2007-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the
property of their respective owners.

Abstract The application note demonstrates how to access the In-System Flash in the Spartan®-3AN
FPGA after the FPGA is configured. The software application uses the XPS InSystem Flash
core to access the In-System Flash in the MicroBlaze™ processor-based reference system.

This application note describes the:

• XPS InSystem Flash parameter settings and Port Connections to access the In-System
Flash (ISF) memory of Spartan-3AN FPGA.

• Software Application that uses the Xilinx In-System and Serial Flash software library
(xilisf) to communicate with the Spartan-3AN ISF Memory.

This reference system is targeted for the Xilinx Spartan-3AN Starter Kit Revision D board.

Included
Systems

The reference system for the Xilinx Spartan-3AN Starter Kit Revision D board is included with
this application note. The reference system is available at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=104114.

Introduction Spartan-3AN FPGAs have In-system Flash (ISF) memory. The ISF memory array appears to
the software application of a Spartan-3AN FPGA as a SPI-based serial Flash memory.

• The ISF memory is primarily designed to configure the FPGA automatically when power is
applied. This is new feature in the Spartan-3AN FPGAs.

• The ISF memory is also available to the FPGA after configuration for various purposes,
such as:

♦ Simple non-volatile data storage.

♦ Storage for identifier codes, serial numbers, IP addresses, etc.

♦ Storage of MicroBlaze processor code that can be copied into CPU addressable
memory, such as DDR2 SDRAM.

This application note explains about how to access the SPI based ISF memory after
configuration using the ISF software library. Two applications are provided - one to program
with flash with an application, and a bootloader to copy this application out of the flash into
DDR2 memory and execute it.

Application Note: Embedded Processing

XAPP1034 (v1.2) April 13, 2009

Reference System: Accessing Spartan-3AN
In-System Flash using XPS SPI
Author: Sundararajan Ananthakrishnan, Brian Hill, Joshua Lu

R

www.BDTIC.com/XILINX

https://secure.xilinx.com/webreg/clickthrough.do?cid=104114
http://www.xilinx.com

Hardware and Software Requirements

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 2

R

Hardware and
Software
Requirements

The hardware and software requirements are:

• Xilinx Spartan-3AN Starter Kit Revision D board

• Xilinx Platform USB Cable or Parallel IV Cable

• Serial null-modem cable

• Serial Communications Utility Program, such as HyperTerminal

• Xilinx Platform Studio 10.1.03 (10.1 with service Pack 3)

• Xilinx Integrated Software Environment (ISE)® 10.1.03 (10.1 with service Pack 3)

• Xilinx Software Development Kit 10.1.03

Reference
System
Specifics

The reference system has the MicroBlaze processor with the caches enabled to use the
instruction cache (I-cache) and the data cache (D-cache) from the external DDR2 memory. In
addition, the XPS InSystem Flash core with interrupts, the XPS BRAM controller, the XPS
UART Lite core with interrupts, and the XPS Interrupt Controller (XPS INTC), cores are used in
the reference system.

The reference system is shown the block diagram shown in Figure 1 and the address map of
the reference system is shown in Table 1.
X-Ref Target - Figure 1

Figure 1: Reference System Block Diagram

MicroBlaze
Processor

Spartan-3AN FPGA
LMB BRAM
Controller

IXCL

X1034_01_032209

XPS
UART Lite

XPS
INTC

XPS
GPIO

MPMC
DXCL

PLBv46 Bus

ILMB

DLMB

XPS
InSystem

Flash

www.BDTIC.com/XILINX

http://www.xilinx.com

Reference System Specifics

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 3

R

Address Map

System Configuration

This Xilinx Spartan-3AN Starter Kit based reference system uses the MicroBlaze processor
through the caches enabled. The XPS InSystem Flash core connects the ISF to the MicroBlaze
processor through the PLBv46 bus in the reference system. The DDR2 SDRAM is used as the
external memory and is configured to allow cacheline transactions from the MicroBlaze
processor in the reference system. The Multi-Port Memory Controller (MPMC) is used to
connect to the DDR2 SDRAM memory.

The XPS INTC core handles the interrupt signal from the XPS InSystem Flash controller.

The XPS InSystem Flash core is a 32-bit slave peripheral that connects to the PLBv46 and
provides access to the ISF using SPI protocol.

Setting the XPS InSystem Flash core parameters

The XPS InSystem Flash core uses the XPS SPI IP core as the base core. The ISF primitive is
instantiated in the core along with the XPS SPI IP core instantiation. This core is available as
the Memory and Memory Controller part as shown in Figure 2.

Set the parameter, Include both Receiver and Transmitter FIFOs to TRUE to include the
Transmit and Receive FIFOs in the XPS InSystem Flash. Set the the parameter, Ratio of PLB
Clock Frequency To SCK Frequency, to the default value of 32. In this system, the PLB bus
clock frequency is 62.5 MHz, therefore, the SPI peripheral clock will operate at a frequency of
1.95 MHz. Because the core is the only slave, set the parameter, Total Number of Slave
Select Bits in SS Vector, to 1.

Table 1: Reference System Address Map

Instance Peripheral Base Address High Address

dlmb_cntlr / ilmb_cntlr lmb_bram_if_ctlr 0x00000000 0x00003FFF

LEDs_8Bit xps_gpio 0x81400000 0x8140FFFF

xps_intc_0 xps intc 0x81800000 0x8180FFFF

xps_insystem_flash_0 xps insystem flash 0x86c00000 0x86c0FFFF

RS232_DTE xps uartlite 0x84000000 0x8400FFFF

debug_module mdm 0x84400000 0x8440FFFF

DDR2_SDRAM mpmc 0x8c000000 0x8FFFFFFF

X-Ref Target - Figure 2

Figure 2: Add XPS InSystem Flash IP

X1034_02_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

XILISF Library

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 4

R

The XPS InSystem Flash parameters are shown in Figure 3.

XILISF Library This section describes the Xilinx In-System and Serial Flash Library that accesses the In-
System Flash memory and the example application that is used for reading and writing to the
ISF memory.

Xilinx In-System and Serial Flash (xilisf) Library

The Xilinx In-System and Serial Flash (xilisf) Library supports the Xilinx In System Flash
hardware. The library enables higher layer software (for example, an application) to
communicate with the ISF. The library allows the user to write, read, and erase, the ISF. The
user can also protect the data stored in the ISF from unwarranted modification by enabling the
Sector protection feature.

All the APIs in the library are asynchronous. The transfer is initiated and the control is given
back to the user application. The user application must keep track of whether the initiated
operation is completed successfully.

The library uses the Xilinx XSpi driver in interrupt-driven mode or polled mode for
communicating with the ISF. In interrupt mode, the user application must acknowledge any
associated interrupts from the Interrupt Controller.

X-Ref Target - Figure 3

Figure 3: XPS InSystem Flash Parameter Settings

X1034_03_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

XILISF Library

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 5

R

All the Xilinx ISF library APIs are listed in the Table 2.

Note: The address of xilisf stands for the 24-bit physical address of Atmel Flash. UG333 disusses the
24-bit physical address.

To use the xilisf library, the user must choose to include it within their project. In the SDK
Software Platform Settings window, under the OS & Library Settings section, select the xilisf
library by checking the Use column as shown in Figure 4 to add the xilisf library to the system.
In addition, the user must configure the xilisf library as shown in Figure 5.

Table 2: Functions of Library Xilisf

API Description

int XIsf_Initialize(XSpi *Spi, u32 SlaveSel)
This is the API for initializing the ISF library.
This function should be called before any
other API in the ISF library can be called

int XIsf_GetStatus(u8 *ReadPtr) This API returns the contents of the Status
Register in the ISF

int XIsf_GetDeviceInfo(u8 *ReadPtr)
This API returns the various JEDEC
compatible device information about the ISF
which are read from the ISF.

int XIsf_Read(XIsf *InstancePtr,
Xlsf_ReadOperation Operation, void
*OpParamPtr)

This API reads the data from the ISF.

int XIsf_Write(XIsf *InstancePtr,
Xlsf_WriteOperation Operation, void
*OpParamPtr)

This API writes the given data to the ISF.

int XIsf_Erase(XIsf *InstancePtr,
Xlsf_EraseOperation Operation, u32
Address)

This API is used to erase the contents in the
ISF.

int XIsf_SectorProtect(XIsf *InstancePtr,
Xlsf_SpOperation Operation, u8 *BufferPtr)

This API is used to perform Sector Protect
related operations.

int XIsf_WriteEnable(XIsf *InstancePtr, u8
WriteEnable)

This API Enables/Disables writes to the Intel
and STM Serial Flash.

int XIsf_loctl (XIsf *InstancePtr,
Xlsf_loctlOperation Operation)

This API configures and controls the Intel and
STM Serial Flash.

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

XILISF Library

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 6

R

X-Ref Target - Figure 4

Figure 4: Software Platform Settings

X-Ref Target - Figure 5

Figure 5: Configuration of Xillisf Library

X1034_04_032009

X1034_05_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

ISF Organization

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 7

R

ISF
Organization

This application note will discuss the XC3S700AN device only as it is configured with the Xilinx
Spartan-3AN Starter Kit board. Power-of-2 Addressing mode is not used nor discussed. See
the UG333 Spartan-3AN In-System Flash User Guide for information on other Spartan 3AN devices.

The In-System Flash provides 8,650,752 bits (1,081,344 bytes) of storage, which is divided into
sectors, blocks, and pages as shown in Figure Figure 6. There are a total of 16 sectors, with
each sector containing 32 blocks and each block containing 8 pages. One page is 264 bytes.

The ISF contains enough space for two bitstreams. The system provided with this application
note only places one bitstream in the ISF to maximize the space available for user applications.

The uncompressed configuration bitstream for a XC3S700AN device is 2,732,640 bits
(341,580 bytes). This consumes 1,294 pages (341,616 bytes) of the flash (pages 0 - 1,293).
The flash can not be erased in any quantity smaller than one whole page; it is necessary to
round up to the next page to determine the first page usable for other purposes. Page 1294 is
the first available for general because the bitstream uses part of page 1293.

Byte offset 341,616 (which can also be referred to as Sector 5, Block 1, Page 6, Byte 0. The
user should convert this offset to a 24-bit physical address manually) is where the Program_ISF
application, which is provided with this reference system, will program the S-Records of a
software application to be loaded by the included bootloader.

Executing the
Reference
System

To execute the reference system, generate the bitstream and compile the software
applications. The bitstream and the compiled software applications for this system are available
in the ready_for_download directory under the project root directory. Configure a
HyperTerminal or similar program to use the COM port. Connect the RS232 connector (J27) of
the Spartan-3AN Starter Kit board to the COM port via a serial, NULL modem cable.

X-Ref Target - Figure 6

Figure 6: XC3S700AN In-System Flash Organization

Sector 0

Sector 1

Sector 14

Sector 15

Sector 15, Block 0

Sector 15, Block 31

Sector 15, Block 0,
Page 0

Sector 15, Block 0,
Page 7

XC3S700AN:
1081344 Total bytes
15 Sectors
32 Blocks per sector
8 Pages per block

67584 Bytes per sector
2112 Bytes per block
264 Bytes per page

X1034_06_032209

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

Executing the Reference System

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 8

R

Set the HyperTerminal to Baud Rate of 9600, Data Bits to 8, Parity to None, and Flow Control
to None as shown in Figure 7.

Executing the Reference System using the Pre-Built Bitstream and the
Compiled Software Applications

To execute the system using files inside the ready_for_download/ directory in the
project root directory, follow these steps:

1. Change directories to the ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following:

impact -batch xapp1034.cmd

3. Invoke XMD and connect to the processor by the following command:

xmd -opt xapp1034.opt

4. Download the desired executable by using the following command:

dow <executable name>.elf

Executing the Reference System from XPS

To execute the system using XPS, follow these steps:

1. Open system.xmp inside XPS.

2. Use Hardware Generate→Bitstream to generate a bitstream for the system.

Note: If an error is encountered while generating the bitsream, see Figure 8 to modify the ucf file.

3. Use Software→Launch Platform Studio SDK to launch SDK.

a. After SDK has initialized, the Application Wizard is displayed. Click Cancel.

b. Deselect Project→Build Automatically.

c. Choose File→Import.

d. Choose the Existing Projects into Workspace wizard.

e. In the Select root directory field, browse to the Software directory and click OK.

f. The Import Projects window is displayed. Click Finish to import all projects.

g. Build all applications by selecting Project→Clean.

h. Choose Clean all projects.

X-Ref Target - Figure 7

Figure 7: HyperTerminal Settings

X1034_07_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

The Bootloader

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 9

R

i. Check Start build immediately.

j. Click OK.

4. Choose the software application to place in BRAM by selecting Device Configuration →
Bitstream Settings. Select bootloader.elf from the list box. Click Save.

5. Download the bitstream to the board with Device Configuration→FPGA.

6. The newly compiled binaries are located in the applicable
SDK_projects/<application>/Debug/ subdirectory. Right click on right on the
desired project to download the desired application, then select Run As →Run.

a. The Run window appears. If this is the first time that this application is launched with
SDK, click New, otherwise select the appropriate project from the list.

b. Click Run.

c. A warning dialog may appear that there is an existing session. Click Yes to proceed
with downloading the desired application.

The Bootloader A bootloader is provided with this application note. The bootloader copies S-Records (a
standard for representing memory data and regions as ASCII text) from the ISF to DRAM. The
bootloader code and data are entirely in BRAM. As such, it is placed within the FPGA
configuration file download.bit (if generated with XPS), or download_sdk.bit (if
generated with SDK). IMPACT is used to program the download.bit file within the ISF. See
Figure 9.

X-Ref Target - Figure 8

Figure 8: Modifying the ucf File

X1034_08_032209

X-Ref Target - Figure 9

Figure 9: Placing download.bit in the ISF with Impact
X1034_10_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

Program_ISF

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 10

R

Note: If the bootloader in download.bit is to be automatically used, set up the board to configure the
FPGA with the In-System Flash. This is done with jumper block J26 set to Internal Master SPI. See
Figure 10.

A previously generated download.bit is available in the ready_for_download area. If the
user has followed the procedures in the “Executing the Reference System” section, a
download_sdk.bit file will be available in the SDK_projects/implementation
directory.

Now, when the board is reset, the bootloader will automatically run. At this time, no S-Records
have been placed into the ISF for the bootloader to copy, therefore, the bootloader will display
an error stating that invalid S-Resods are present:

ERROR: SREC line is corrupted

Impact is no longer needed, and may be closed at this time.

Program_ISF This application note discusses placing the TestApp_Peripheral application in the Spartan-3AN
In-System Flash. The Program_ISF application is provided to perform this task. Program_ISF
accomplishes this by embedding the application to be placed in the ISF, in this case,
TestApp_Peripheral, within its own executable image.

The process of embedding an application within Program_ISF begins by converting it to S-
Records. This is done with objcopy in an EDK shell as shown below:

$ mb-objcopy -O srec <the executable>.elf flashimage.srec

The text file flashimage.srec is created. Use the linker to embed this data within the
Program_ISF application. The linker can only link files of a format known by the linker. The
flashimage.srec file is converted to an object file using objcopy:

$ mb-objcopy -I binary -O elf32-microblaze -B microblaze \
 --rename-section .data=.rodata,alloc,load,readonly,data,contents \
 flashimage.srec flashimage.o

This command will take the input file, flashimage.srec, and create an object file,
flashimage.o, suitable for linking. The symbol for this S-Record data is determined by the
input file name, in this case, flashimage.srec. The symbols,
_binary_flashimage_srec_start, _binary_flashimage_srec_end, and
_binary_flashimage_srec_size, are created in the .rodata section.

This object file is then placed into a static library archive for ease of use.

$ mb-ar r libflashimage.a flashimage.o

The result is that when Program_ISF is built, it can link with the library flashimage. With the
symbols previously discussed, it can directly access the S-Record data.

X-Ref Target - Figure 10

Figure 10: J26 Internal Master SPI

X1034_10_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

Program_ISF

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 11

R

To simplify this process, the make_flash_obj script is provided in the
SDK_projects/Program_ISF directory. Rather than utilize this script by hand, a feature of
the Xilinx Software Development Kit (SDK) is used. Prior to building an application, any user-
provided script may be run. Configure Program_ISF to utilize this feature as shown in
Figure 11.

TestApp_Peripheral is specified as the application to embed. To ensure that this binary is
available and up-to-date, configure the Program_ISF application with this as a dependant
project, so that it will be built before Program_ISF. See Figure 12.

X-Ref Target - Figure 11

Figure 11: Using the make_flash_obj Script with SDK

X-Ref Target - Figure 12

Figure 12: Program_ISF Dependencies

X1034_11_032209

X1034_12_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

Program_ISF

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 12

R

Configure the Program_ISF application to link with the library which is generated by
make_flash_obj, as well as with the libxilisf library. See Figure 13.

Download the Program_ISF binary built in the “Executing the Reference System” section.

1. Right click on the Program_ISF project, then select Run As → Run.

2. The Run window appears. If this is the first time that this application is launched with SDK,
click New, otherwise select the Program_ISF project from the list.

3. Click Run.

4. A warning dialog may appear stating that there is an existing session. Click Yes to proceed
with downloading the desired application.

When run, the expected output is:

Programming 22494 bytes of ISF @ offset 341616:
Programming flash starting at sector 5 block 1 page 6
Programming flash starting at sector 5 block 1 page 7
Programming flash starting at sector 5 block 2 page 0
Programming flash starting at sector 5 block 2 page 1
Programming flash starting at sector 5 block 2 page 2
Programming flash starting at sector 5 block 2 page 3
Programming flash starting at sector 5 block 2 page 4
Programming flash starting at sector 5 block 2 page 5
Programming flash starting at sector 5 block 2 page 6
Programming flash starting at sector 5 block 2 page 7
Programming flash starting at sector 5 block 3 page 0
……
……
Programming flash starting at sector 5 block 12 page 2
Programming flash starting at sector 5 block 12 page 3
Verifying flash image, Please Wait......
Done.

X-Ref Target - Figure 13

Figure 13: Program_ISF Linker Settings

X1034_13_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

Program_ISF

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 13

R

When the board is reset by the user, the bootloader should now copy TestApp_Peripheral out of
the ISF and execute it as is shown below:

EDK Bootloader:
Copying S-Records from flash offset 0x00053670
Executing program starting at address: 00000000
-- Entering main() --

Running GpioOutputExample() for LEDs_8Bit...
GpioOutputExample PASSED.

Running UartLiteSelfTestExample() for debug_module...
UartLiteSelfTestExample PASSED
-- Exiting main() --

Note: If the bootloader cannot fit in the 16K BRAM, the user should set the compiler Optimization option
as shown in Figure Figure 14 or the extra compiler flag as shown in Figure Figure 15.

X-Ref Target - Figure 14

Figure 14: Debug and Optimization Settings

X1034_14_032209

www.BDTIC.com/XILINX

http://www.xilinx.com

References

XAPP1034 (v1.2) April 13, 2009 www.xilinx.com 14

R

References 1. DS698 XPS InSystem Flash v1.00a Product Specification

2. UG332 Spartan-3 Generation Configuration User Guide

3. UG333 Spartan-3AN FPGA In-System Flash User Guide

4. UG334 Spartan-3A/3AN Starter Kit Board User Guide

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

X-Ref Target - Figure 15

Figure 15: Extra Compiler Flag Settings

X1034_15_032209

Date Version Revision

11/21/07 1.0 Initial Xilinx release.

3/5/08 1.1 Updated to include bootloader.

4/13/09 1.2 Updated to use XPS Insystem Flash and the officially released xilisf
library.

www.BDTIC.com/XILINX

http://www.xilinx.com/support/documentation/ip_documentation/xps_insystem_flash.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug334.pdf

	Reference System: Accessing Spartan-3AN In-System Flash using XPS SPI
	Abstract
	Included Systems
	Introduction
	Hardware and Software Requirements
	Reference System Specifics
	Address Map
	System Configuration
	Setting the XPS InSystem Flash core parameters

	XILISF Library
	Xilinx In-System and Serial Flash (xilisf) Library

	ISF Organization
	Executing the Reference System
	Executing the Reference System using the Pre-Built Bitstream and the Compiled Software Applications
	Executing the Reference System from XPS

	The Bootloader
	Program_ISF
	References
	Revision History
	Notice of Disclaimer

