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It doesn’t usually take very long to create an FPGA design.
Recently, however, a Xilinx competitor ran an ad declaring
that while an FPGA can take up to a year to design, it can
be cloned in only a second. Are FPGA designs really that
insecure? While the ad seems absurdly hyperbolic, it is
true that the bitstreams of some volatile FPGAs can be
cloned.  While it’s unlikely that cloning could happen in "a
second," fears about the insecurity of design efforts are
valid ones. To alleviate these anxieties, this white paper
will show you how to substantially secure the bitstream
and the overall design of FPGAs using Xilinx
CoolRunner™-II CPLDs. It will not particularly address
Virtex™-II and its successors because they already employ
Triple DES bitstream encryption, which is considered by
many to be sufficiently strong encryption to deter IP theft.
It will rather focus on volatile FPGAs in general, including
both Xilinx FPGAs and competitors’ FPGAs within its
scope.    
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The Problem Figure 1 shows a common way to download an FPGA from a standard EPROM, using 
a CPLD as the EPROM controller. The left hand side shows bitstream 

delivery directly from the EPROM into the FPGA, with the CPLD managing the 
addressing and delivery of control strobes to the FPGA.  The right hand version has 
the CPLD again managing the data, but in this situation it also serializes the data and 
may even drive configuration through the JTAG port.  The “one second” clone would 
be simply copying the EPROM, which in reality can take a lot more than one second.  
So, the task is to make it harder to “clone.” Note that the EPROM size and CPLD 
capacity will be chosen to provide sufficient capacity to satisfy the FPGA needs as well 
as other needs within the system.  There may be multiple FPGAs chained for bitstream 
delivery, so Figure 1 is really a talking-point diagram and may be a substantially 
simpler configuration than many of today’s systems actually use.

First Step —
External 
Bitstream 
Encryption

To thwart cloners, we recommend encrypting the EPROM bitstream with software 
before programming the EPROM.  Then, while the CoolRunner-II loads the FPGA, it 
decrypts the bitstream at the same time.  Cloners can’t copy the CPLD and the EPROM 
contents will be gibberish.  

CoolRunner-II CPLDs are nonvolatile, and have many of the key features needed to 
support both encryption and decryption.  The nonvolatility means they power up with 
internal bits that can be interpreted as “keys” or “passwords,” or initialization vectors, 
depending on your point of view.  Indeed, volatility is at the heart of the security issue, 
and it is possible—to a degree—to convey the nonvolatility of the CoolRunner-II parts 
to the volatile FPGA parts, so that it will take a lot of time and money to clone the 
FPGA design.  For conceptual reasons, this white paper will consider a fairly simple 
encryption/decryption method, and point you to other literature for more elaborate 
methods that have been shown to provide greater security strength.

The example considered here is the synchronous stream cipher, which has both 
strengths and weaknesses.  For simplicity, we analyze a simple Linear Feedback Shift 
Register (LFSR), which is known to be able to calculate a pseudo-random number 
within its structure.   Figure 2 shows a simple LFSR.  This is not specifically maximal 
length, but shows the basic structure.

Figure 1: Parallel Configuration (Left) and Serial Configuration (Right)
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Most engineers have some exposure to LFSRs from logic design classes and possibly 
from communication coding theory.  They are also frequently used to calculate 
checksums for data packets.  LFSRs fall in the category of Linear Sequential Machines, 
which means they are constructed (typically) from D flip-flops and EX-OR gates.  If 
initialized with a nonzero value, they will create a set of binary numbers within the 
flops, which will not repeat for a long clock sequence, depending on the location of the 
EX-OR gates and the number of D flip-flops. Identifying the feedback (aka “tap”) sites 
to achieve the maximal length sequence is important.  Xilinx has published a number 
of application notes regarding LFSR behavior, referenced at the end of this document. 

One of the oldest ciphers (not particularly a stream cipher) is the One Time Pad, which 
appeared around World War I, and was subsequently shown by Claude Shannon to 
be a perfect cipher, with just a few caveats.  Figure 3 shows a simplistic OTP.

In Figure 3, we show the plain text (not encrypted) as a set of ones and zeroes.  Then, 
we show the key as an array of question marks, as it is random and kept secret.  When 
the plain text is EX-ORed with the corresponding key bits, the uncertainty of the result 
produces the array of question marks on the right.  The requirements to be considered 
are the following:

1. The key length must match the message length

2. The key must be random

Figure 2: Simple Linear Feedback Shift Register
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3. The key must not be re-used

Modern cryptographers have learned much, and tend to disregard the OTP as being 
particularly strong largely because the caveats are too tempting to violate.  Long 
messages require long keys, which are a hassle in general.  Obtaining a totally random 
key is also painful.  Given the first two issues, there is a tendency to reuse keys. 
Nonetheless, for the sake of argument, let’s suppose that we can fairly easily obtain a 
long random key, and we will only use it one time, with a given bitstream.  

So, with that as a target, our first requirement is to create a random number that 
matches (or exceeds) the size of the target bitstream capacity.  Table 1 summarizes 
some bitstream capacities for some Virtex I parts, as a reference.  These values will 
help us select LFSR lengths so that we can create pseudo random numbers that are 
appropriately long and eliminate the risk of introducing repetition into what will 
become the key for our cipher.  With this set of bitstreams as targets to secure, we will 
need to identify a set of LFSR structures that will have enough bits, and a way for us to 
create the state machines and know they won’t repeat.

LFSRs fall in two categories, internal feedback and external feedback.  Both can create 
pseudorandom sequences of  2n-1 patterns before repeating, if created with the correct  
primitive polynomial.  Figure 4 shows the two types, and Table 2 gives the size (or 
degree) of the shift register and appropriate primitive polynomials.  

Table 1: Some Virtex bitstream Lengths

Device # of Configuration Bits

XCV50 559,200

XCV100 781,216

XCV150 1,040,096

XCV200 1,335,840

XCV300 1,751,808

XCV400 2,546,048

XCV600 3,607,968

XCV800 4,715,616

XCV1000 6,127,744
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Note that in Figure 4, we do not show initialization circuitry. Typically either 
asynchronous set/reset circuits provide this, or it occurs from configuration bits 
within the CoolRunner-II CPLD during power-on initialization.  

Figure 4: External and Internal Feedback LFSRs for P(X)=X4+X3+X+1

Table 2: Some Primitive Polynomials and their Degree

Degree(n) Polynomial

2,3,4,6,7,15,22 Xn  + x + 1

5,11,21,29 Xn  + X2  +  1

8,19 Xn  +  X6  +  X5  +  X  +  1

9 Xn   +  X4  +  1

10,17,20,25,28 Xn   +  X3  +  1

12 Xn   +  X7  +  X4  +  X3  +  1

13,24 Xn  +  X4   +  X3  +  X  +  1 

14 Xn  +  X12  +  X11  +  X  +  1

16 Xn  +  X5   +  X3  +  X2  +  1
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The formula for the maximal length of the LFSR sequence given that it is derived from 
a primitive polynomial is simply 2n –1, where “n” is the degree of the primitive 
polynomial, and we assume that it is initialized to a nonzero value. That being the 
case,  here is how it can be used.  Table 1 says that the bitstream for an XCV150 is 
1,040,096 bits long.  That means we need a primitive polynomial that is at least that 
long to create the pseudo-random number.  A thousand (decimal) is a little less than 
1024, which takes 10 bits to represent (0-1023).  A million will take a little less than 20 
bits to represent (1,048,576).  That means the polynomial which has 20 bits will create 
a pseudo-random bitstream that is greater than 1,040,096 bits.  Hence, choose n=20 
and the corresponding polynomial would be: X20 + X3 + 1.  Figure 5 shows a 
corresponding LFSR.  Of particular note is that it only takes a single EX-OR gate.  In 
general, LFSRs that require minimal logic circuitry are attractive.

18 Xn  +  X7  +  1

23 Xn  +  X5  +  1

26,27 Xn  +  X8  +  X7  +  X  +  1

30 Xn  +  X16  +  X15  +  X  +  1

Table 2: Some Primitive Polynomials and their Degree (Continued)
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The circuit in Figure 5 would take up the flip-flops for 20 macrocells, and would thus 
fit easily into the smallest CoolRunner-II CPLD.  In CoolRunner-II CPLDs, each 
macrocell is comprised of a flip-flop and a set of logic driving it that can create a Sum 
of Products logic structure.  Also contained within the macrocell is an EX-OR gate.  
The architecture is clustered into 16-macrocell function blocks,  so this function would 
partially consume 1.25 FB.  That leaves much logic available to form other functions, as 
needed. 

Attacking the 
Bitstream 
Encryption

Now that we have constructed a proposal for using an LFSR to decrypt the bitstream, 
let’s consider how it may be attacked by a “cloner.” Just to reiterate, we are assuming 
that an FPGA design has been created and a corresponding bitstream produced.  The 
bitstream was subsequently run through a software routine (typically), and has EX-
ORed successive bits with an internal model of an appropriate LFSR.  This resulted in 
an encrypted bitstream that is loaded into an EPROM.  

It would be the developer’s job to ensure that the bitstream calculation was done 
correctly, as was the creation of the appropriate file formatted for downloading 
(checksum calculations, etc.)  When the EPROM contents are accessed by the CPLD for 

Figure 5:  Internal Feedback LFSR for Primitive Polynomial X20  +  X3  +  1 
(clock and initialization signals not shown)
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subsequent delivery into the FPGA, they are EX-ORed with a hardware version of the 
LFSR, which produces clear bits for delivery to the FPGA.  

How might this be attacked?  There are several ways, but there are two that are most 
typical.  First, an attacker could create a circuit capable of capturing the clear bits 
coming out of the CPLD.  Figure 6 shows a simplified circuit for doing that.

In Figure 6, the CPLD with LFSR delivers its clear bits (serial or parallel) to the FPGA, 
while CPLD #2 contains a circuit that copies the bits as they pass by into a shadow 
SRAM.  Details for CPLD #2 and the SRAM depth will depend on the bitstream being 
captured, but it will still require some serious training for the attacker to capture all the 
bits, in the right format, protocol, etc.  Being off by a single shift out of a million plus 
bits won’t work.  Any noise, clock jitter, or any one of a number of other practical 
issues makes this a lot tougher than it looks.  Then, the data would need to be 
formatted and driven into the FPGA to assure it works.  It has its merit, but definitely 
takes more than a “second to clone.”

The other general way to attack this would be to recognize in general the way the 
CPLD is working and to subvert it.  If an EPROM with all zeroes is inserted into the 
EPROM position (remove chip and insert blank), then an interesting fact about the EX-
OR function is discovered:  A EX-OR 0 = A.  That’s right.  A blank EPROM would 
divulge the pseudo-random number being created by the CPLD’s LFSR.  Simple 
LFSRs have had too much history!  Being linear state machines, they have an impulse 
response.  If you know that, you can convolve (logical convolution) the impulse 

Figure 6: Rough Circuit to Capture bitstream "On the Fly"

FPGA

CPLD
 with
LFSR

E
PR

O
M

control

data

address

data 8

N

CPLD
   #2

SRAM

www.BDTIC.com/XILINX



White Paper: CipherStream Protocol—How CoolRunner-II CPLDs Protect FPGA IP

WP197 (v1.0) June 30, 2003 www.xilinx.com 9
1-800-255-7778

R

response with an input stream and predict the results.  This has led to ways to identify 
the primitive polynomial very systematically, which means it can be cracked by a set 
of experiments.  

There are other kinds of attacks.  There are correlation attacks, linear syndrome attacks 
and a wide assortment of others.  Luckily, there are also a bunch of circuits that have 
been developed for building stream ciphers that are much harder to crack.  Those are 
described in an appendix, later.

Second Step —
Simple 
Steganography

Steganography is basically hiding one message inside another.  In our situation, we 
have identified a weakness of our LFSR—the blank EPROM attack.  Although we will 
be recommending a more elaborate stream cipher solution, it won’t hurt to add in 
protection against the blank EPROM.  

Again, the idea is simple.  The CPLD won’t use up all its logic doing the stream cipher, 
so it makes sense to take out some insurance and add more circuitry to offer a change 
of response if being attacked.  We could simply scan through the EPROM and if all 
addresses have zeroes, inhibit the delivery of the bitstream through the stream cipher.  
An attacker would then observe that we ran through all the addresses and didn’t 
deliver anything to the output.  That would work.  Alternately, we could scan the 
EPROM and deliver a different but also pseudo-random pattern (say, from a different 
internal LFSR polynomial) to the FPGA. Doing so might even destroy the FPGA.  This 
may or may not be a good thing.  

A third approach would be to scan the EPROM and look for a specific set of bits at 
particular locations.  This means that we would read the EPROM, and when certain 
addresses are created, we would compare what we found in the EPROM to internal 
copies of the same bits within the CPLD.   If all of the targeted address contents 
matched the internal CPLD copies, the next round of addressing would be collecting 
the real encrypted EPROM data, and delivering it to the FPGA. The particular 
addresses we choose would constitute our “steganographic” authentication message: 
"Yes, this is a correct EPROM, so go ahead and decrypt it and load the FPGA." 

At this point, we have done something that is suspicious: we have introduced a 
complete scan of the EPROM before we start delivering the decrypted data.  We could 
add confusion here by using an LFSR to pseudo-randomly produce EPROM 
addresses, and again look for contents of specific address locations.  If we did the 
initial scan pseudo-randomly, then did a linear addressing when we read out the 
encrypted data, an attacker could identify when we switch from a scan phase to a 
decrypt phase.  So, if we chose to do the scan for correct EPROM data, then 
subsequently did a pseudo-random access of the EPROM for the decrypting, it would 
be harder for an attacker to discover what is going on.   It also means the encrypted 
bitstream would have to be loaded into the EPROM file in an interesting order that 
might take a while to get right. But, it has merit for thwarting attackers.

Attacking the 
Steganography

It is difficult to discover the steganography, but not impossible.  As described above, 
there are two distinct reading phases.  The first, where the CPLD simply looks through 
the EPROM for certain items, must be done completely.  If any addresses are skipped, 
then that narrows the search for what is being looked at.  Make sure the CPLD 
examines every address within the EPROM, and doesn’t take any action differently 
until everything has been looked at.  Short cycling the search can result in ultimately 
divulging the decision points, which can be a weakness with regard to Differential 
Power Analysis (DPA), and Tempest attacks.  

www.BDTIC.com/XILINX
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DPA means that an attacker could inspect the power-supply pins of the CPLD, 
observe its behavior when scanning a blank EPROM, scan its behavior with a valid 
EPROM, and compare addresses and data when there are differences.  If the attacker 
can discover which addresses are being scanned for, he can then do a brute force 
attack on those addresses to find which pass the steganography test.  If all addresses 
are looked at before a conclusion is reached, this makes the decision for multiple data 
items occur only once, and always at the end.  It is best, however, even given that, to 
still make sure the key inspected data is scattered through the middle of the EPROM 
address space.

There are also other subtle techniques along these lines, such as using neural nets.  
Tempest is basically doing a similar inspection of the electromagnetic radiation 
coming off the CPLD.   All of these attacks have merit.  Luckily, they are also very hard 
to accomplish and sort out. See References, page 11 at the end for additonal 
information.

The Third 
Step— 
Repartitioning

As commented earlier, frequently CPLDs are on the board doing different tasks than 
loading the FPGA.  They are programmable logic devices with their own 
characteristics and abilities,  among which is relatively fast pin to pin speeds and high 
FMAX operation.  That being the case, their nonvolatility can be used in collaboration 
with the volatile requirements of SRAM based FPGAs.  Design partitioning is 
basically separating aspects of a given design and distributing it among the various 
logic components within the system being designed.  The recommendation here is 
simple.  Inspect the FPGA design and identify a section of it that will be critical for the 
overall operation, but can actually be placed in the CPLD instead of in the FPGA.  This 
may mean redefining the FPGA functionality, but here is a hint: FPGAs are extremely 
good at high speed, regular arithmetic operations, and those aspects frequently are 
best held within the FPGA. However, the control function for those aspects might be 
good operations to move into the CPLD. 

Conclusion We have discussed general techniques to make it hard for cloners to obtain FPGA 
bitstreams.  We discussed combining three techniques—cryptography, steganography 
and partitioning—to raise the bar for cloners.  The circuitry for each is fairly small, 
especially in light of the additional security they will bring to your system. 

It would be possible to gain extra security by adopting just cryptography, or just 
partitioning (although the use of all of the three techniques together will keep your 
system best protected).  If a key element of the FPGA is within the CPLD, and its 
security bits are set, then it will require reverse engineering the CPLD to get the rest of 
the design—assuming, of course, that the function contained in the CPLD is not so 
obvious that it can be deduced by observation.   CoolRunner-II CPLDs add 
substantially to the security picture, when properly used!  Be sure and read more 
about the CoolRunner-II security in Xilinx White Paper WP170.

Appendix: 
Additional 
Steps for the 
Insecure and 
Paranoid

As mentioned earlier, LFSRs are considered to be cryptographically insecure when 
directly building stream ciphers.  The references include several options which go 
beyond simple LFSR solutions and appear to have merit as viable stream ciphers.  In 
particular, Reference 1 summarizes more than a dozen that combine LFSRs in 
interesting ways to increase the resistance to attack.  Among them are:

• Bilateral Stop and Go generators
• Dynamic random sequence generator

www.BDTIC.com/XILINX
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• Gollman cascade
• Shrinking generator
• Self shrinking generator

Typically, these ciphers combine several LFSRs by sequentially stacking them, by 
combining several with multiplexers, by logically combining multiple LFSRs to direct 
the clocking of others, etc.  

Going beyond cryptography, steganography and partitioning, there are other actions 
that can be taken.  Using chip scale packages with balls that hug the board surface 
makes it difficult to probe signals.  Connecting PCB traces on internal traces, without 
surfacing except right at the pin sites, also makes it difficult.  Employing conformal 
chip coatings is still another way of keeping signals secure, and it is certain that even 
more techniques exist.

References Stream Ciphers
1. Bruce Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons, Inc., 1996, 

Chapters 16 and 17 (pp369 –428)

2. A.J. Menezes, P. van Oorschott,  and S.A. Vanstone, Handbook of Applied 
Cryptography, CRC Press 1997, pp 191-222 (Chapter 6, "Stream Ciphers") 
(http://www.cacr.math.uwaterloo.ca/hac/)

3. "Stream Ciphers," M.J.B Robshaw, RSA Laboratories Technical Report TR-701, 
Version 2.0, July 25, 1995 (ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf)

4. "Clock-Controlled Shift Registers: A Review," D. Gollman, W. Chambers, IEEE 
Journal on selected Areas in Communications, Vol. 7, Nol 4, May 1989

5. "A New Family of Stream Ciphers Based on Cascaded Small S-Boxes," Lin Gan, 
Stan Simmons and Stafford Tavares, 2001 Canadian Conference on Electrical and 
Computer Engineering, Toronto, Ontario

6. "SOBER: A Stream Cipher based on Liner Feedback over GF(28)," Greg Rose  
(http://www.qualcomm.com.au/Sober.html)

7.  "SNOW – a new stream cipher," Patrick Ekdahl, Thomas Johansson, Proceedings of 
the first Nessie Workshop, Nov. 13-14, 2000. (check the whole webpage at: 
http://www.it.lth.se/cryptology/snow/snow10.pdf)

8. "The Lili-128 Keystream Generator," E. Dawson, A. Clark, J. Golic, W. Millan, L. 
Penna, L. Simpson 
(http://www.isrc.qut.edu.au/resource/lili/lili_nessie_workshop.pdf)

9. "Pseudorandom Bit Generators in Stream-Cipher Cryptography," Kencheng Zeng, 
Chung-Huang Yang, Dah-Yea Wei and T.R.N. Rao, Computer, February 1991, pp 8 
– 17

10. "A Low Cost, High Speed Encryption System and Method," G. Mayhew, I.E.E.E. 
1994

11. "The Alternating Step (r,s) Generator," Sept. 2002, Ali Adel Kanso 
(http://www.lsv.ens-cachan.fr/~goubault/SECI-02/Final/actes-seci02/pdf/004-
Kanso.pdf)

12. "Windmill pn-sequence generators," B.J.M. Smeets, W.G. Chambers, I.E.E. 
Proceedings, Vol. 136, Pt. E. No.5, September 1989, pp 401 – 404

www.BDTIC.com/XILINX

http://www.cacr.math.uwaterloo.ca/hac/
ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf
http://www.qualcomm.com.au/Sober.html
http://www.it.lth.se/cryptology/snow/snow10.pdf
http://www.isrc.qut.edu.au/resource/lili/lili_nessie_workshop.pdf
http://www.lsv.ens-cachan.fr/~goubault/SECI-02/Final/actes-seci02/pdf/004-Kanso.pdf
http://www.lsv.ens-cachan.fr/~goubault/SECI-02/Final/actes-seci02/pdf/004-Kanso.pdf


12 www.xilinx.com WP197 (v1.0) June 30, 2003
1-800-255-7778

White Paper: CipherStream Protocol—How CoolRunner-II CPLDs Protect FPGA IP
R

13. "Clock-controlled shift registers in binary sequence generators," W. G. Chambers, 
I.E.E. Proceedings, Vol. 135, Pt. E, No. 1, January 1988, pp. 17 – 24

14. "Mutually clock-controlled cipher keystream generators," W.G. Chambers, S.J. 
Shepard, Electronics Letters, 5th July 1997, Vol. 33, No. 12, (I.E.E.E.), pp 1020 – 1021

LFSRs.
15. Shift Register Sequences, S. Golomb,  Aegean Park Press, Laguna Hills, CA. 1982

16. "Pseudorandom bit generator based on dynamic feedback topology," R. Mita, G. 
Palumbo, S. Pennisi and M. Poli, Electronics Letters, 12th September 2002, vol. 38, 
No. 19, pp 1097 – 1098

17. "Maximal and Near-Maximal Shift Register Sequences: Efficient Event Counters 
and Easy Discrete Logarithms," Douglas W. Clark, Lih-Jyh Weng, IEEE 
Transactions on Comuputers 43,5 (May 1994, pp. 560-568

18. "The Theory of Autonomous Linear Sequential Networks," Bernard Elspas, IRE 
Transactions on Circuit Theory, 1959, CT-6, pp. 45-60

19. "Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence 
Generators," Peter Alfke, XAPP 052, July 7, 1996, Xilinx 
(http://www.xilinx.com/xapp/xapp052.pdf)

20. "LFSRs as Functional Blocks in Wireless Applications," (XAPP220), January 11, 
2001,Stephen Lim and Andy Miller (http://www.xilinx.com/xapp/xapp220.pdf)

21. "PN Generators Using the SRL Macro," (XAPP211), January 9, 2001, Andy Miller 
and Michael Gulotta (http://www.xilinx.com/xapp/xapp211.pdf)

22. "Linear Feedback Shift Registers in Virtex Devices," (XAPP 210), January 9, 2001, 
Maria George and Peter Alfke (http://www.xilinx.com/xapp/xapp210.pdf)

23. "Gold Code Generators in Virtex Devices," (XAPP 217), January 10, 2001, Maria 
George, Mujtaba Hamid and Andy Miller 
(http://www.xilinx.com/xapp/xapp217.pdf)

24. "Generators for sequences with Near-Maximal Linear Equivalence," W.G. 
Chambers, D. Gollmann, I.E.E. Proceedings, Vol. 135, Pt. E, No. 1, January 1988, pp 
67 – 69

25. "Generation of High-Speed Pseudo-Random Sequences Using Multiplex-
Techniques," F. Sinnesbichler, A. Ebberg, A. Felder, R. Weigel, 1996 IEEE MTT-S 
Digest, pp 1351 – 1354

Stream Ciphers Attacks 
26. "Cryptanalysis of Three Mutually Clock-Controlled Stop/Go Shift Registers," 

Jovan Dj. Golic, IEEE Transactions on Information Theory, Vol. 46, No. 3, May 2000, 
pp. 1081 – 1090

27. "On the Applicability of Distinguishing Attacks Against Stream Ciphers," Greg 
Rose, Philip Hawkes, Third Nessie Workshop

28. "A New Algorithmic Procedure to test  m-Sequence Generating Connections of 
Stream Cipher’s LFSRs," A.Ahmad, S. Al-Busaidi and M.J. Al-Mushrafi, IEEE 
Catalogue No. 01CH37239

www.BDTIC.com/XILINX

http://www.xilinx.com/xapp/xapp052.pdf
http://www.xilinx.com/xapp/xapp220.pdf
http://www.xilinx.com/xapp/xapp211.pdf
http://www.xilinx.com/xapp/xapp210.pdf
http://www.xilinx.com/xapp/xapp217.pdf


White Paper: CipherStream Protocol—How CoolRunner-II CPLDs Protect FPGA IP

WP197 (v1.0) June 30, 2003 www.xilinx.com 13
1-800-255-7778

R

29. "Derivation of the Feedback Taps of an LFSR from a Sequence Fragment," D.H. 
Green, Electronics Letters, 16th August 1990, Vol. 26, No. 17, pp 1352 – 1353.

30. "Searching for the Optimum Correlation Attack," Ross Anderson 
(http://www.cl.cam.ac.uk/Research/Security/studies/st-alg.html)

31. "Fast Correlation Attacks based on Turbo Code Techniques," Thomas Johansson, 
Frederick Johnsson 
(http://citeseer.nj.nec.com/cache/papers/cs/23734/http:zSzzSzwww.it.lth.sezSzt
homaszSzpaperszSzpaper080.pdf/johansson99fast.pdf)

32. "Another Attack on A5/1," Patrick Ekdahl, Thomas Johansson, I.E.E.E. 
Transactions on Information Theory, Vol. 49, No. 1, January 2003, pp. 284 – 289

33. "A Fast Correlation Attack on Lili-128," Thomas Johansson, Frederick Johnson, 
(http://citeseer.nj.nec.com/cache/papers/cs/23734/http:zSzzSzwww.it.lth.sezSzt
homaszSzpaperszSzpaper140.pdf/a-fast-correlation-attack.pdf)

Steganography 
34. "Information Hiding – A Survery," Fabien A.P. Petitcolas, Ross J. Anderson and 

Markus G. Kuhn, Proceedings of the I.E.E.E. Vol. 87, No. 7, July 1999, pp 1062 –1078 
(http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/ieee99-infohiding.pdf)

Randomness 
35. “Statistical Testing of Random Number Generators,” Juan Soto, Proceedings of the 

22nd National Information Systems Security Conference, Crystal City, Virginia, 
October, 1999 (see also reference 1, 2 and 15)

36. "Guaranteeing the Diversity of Number Generators," A. Shamir, B. Tsaban, 
(http://arxiv.org/PS_cache/cs/pdf/0112/0112014.pdf)

Further Reading Application Notes
http://www.xilinx.com/xapp/xapp375.pdf (Timing Model)

http://www.xilinx.com/xapp/xapp376.pdf (Logic Engine)

http://www.xilinx.com/xapp/xapp377.pdf (Low Power Design)

http://www.xilinx.com/xapp/xapp378.pdf (Advanced Features)

http://www.xilinx.com/xapp/xapp379.pdf (High Speed Design)
http://www.xilinx.com/xapp/xapp380.pdf (Cross Point Switch)

http://www.xilinx.com/xapp/xapp381.pdf (Demo Board)

http://www.xilinx.com/xapp/xapp382.pdf (I/O Characteristics)

http://www.xilinx.com/xapp/xapp383.pdf (Single Error Correction Double Error Detection)

http://www.xilinx.com/xapp/xapp384.pdf (DDR SDRAM Interface)

http://www.xilinx.com/xapp/xapp387.pdf (PicoBlaze Microcontroller)

http://www.xilinx.com/xapp/xapp388.pdf (On the Fly Reconfiguration)

http://www.xilinx.com/xapp/xapp389.pdf (Powering CoolRunner-II CPLDs)

http://www.xilinx.com/xapp/xapp393.pdf (8051 Microcontroller Interface)

http://www.xilinx.com/xapp/xapp394.pdf (Interfacing with Mobile SDRAM)

www.BDTIC.com/XILINX

http://www.cl.cam.ac.uk/Research/Security/studies/st-alg.html
http://citeseer.nj.nec.com/cache/papers/cs/23734/http:zSzzSzwww.it.lth.sezSzthomaszSzpaperszSzpaper080.pdf/johansson99fast.pdf
http://citeseer.nj.nec.com/cache/papers/cs/23734/http:zSzzSzwww.it.lth.sezSzthomaszSzpaperszSzpaper080.pdf/johansson99fast.pdf
http://citeseer.nj.nec.com/cache/papers/cs/23734/http:zSzzSzwww.it.lth.sezSzthomaszSzpaperszSzpaper140.pdf/a-fast-correlation-attack.pdf
http://citeseer.nj.nec.com/cache/papers/cs/23734/http:zSzzSzwww.it.lth.sezSzthomaszSzpaperszSzpaper140.pdf/a-fast-correlation-attack.pdf
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/ieee99-infohiding.pdf
http://arxiv.org/PS_cache/cs/pdf/0112/0112014.pdf
http://www.xilinx.com/xapp/xapp375.pdf
http://www.xilinx.com/xapp/xapp376.pdf
http://www.xilinx.com/xapp/xapp377.pdf
http://www.xilinx.com/xapp/xapp378.pdf
http://www.xilinx.com/xapp/xapp379.pdf
http://www.xilinx.com/xapp/xapp380.pdf
http://www.xilinx.com/xapp/xapp381.pdf
http://www.xilinx.com/xapp/xapp382.pdf
http://www.xilinx.com/xapp/xapp383.pdf
http://www.xilinx.com/xapp/xapp384.pdf
http://www.xilinx.com/xapp/xapp387.pdf
http://www.xilinx.com/xapp/xapp388.pdf
http://www.xilinx.com/xapp/xapp389.pdf
http://www.xilinx.com/xapp/xapp393.pdf
http://www.xilinx.com/xapp/xapp394.pdf


14 www.xilinx.com WP197 (v1.0) June 30, 2003
1-800-255-7778

White Paper: CipherStream Protocol—How CoolRunner-II CPLDs Protect FPGA IP
R

CoolRunner-II  Data Sheets 
http://direct.xilinx.com/bvdocs/publications/ds090.pdf (CoolRunner-II Family Datasheet)

http://direct.xilinx.com/bvdocs/publications/ds091.pdf (XC2C32 Datasheet)

http://direct.xilinx.com/bvdocs/publications/ds092.pdf (XC2C64  Datasheet)

http://direct.xilinx.com/bvdocs/publications/ds093.pdf (XC2C128 Datasheet)

http://direct.xilinx.com/bvdocs/publications/ds094.pdf (XC2C256 Datasheet)

http://direct.xilinx.com/bvdocs/publications/ds095.pdf (XC2C384 Datasheet)

http://direct.xilinx.com/bvdocs/publications/ds096.pdf (XC2C512 Datasheet)

CoolRunner-II White Papers
http://www.xilinx.com/publications/products/cool2/wp_pdf/wp165.pdf (Chip Scale 
Packaging)

http://www.xilinx.com/publications/whitepapers/wp_pdf/wp170.pdf (Security)

http://www.xilinx.com/publications/whitepapers/wp_pdf/wp198.pdf (Cell Phone 
Handsets)

Revision 
History

The following table shows the revision history for this document. 

Date Version Revision

06/30/03 1.0 Initial Xilinx release.

www.BDTIC.com/XILINX

http://direct.xilinx.com/bvdocs/publications/ds090.pdf
http://direct.xilinx.com/bvdocs/publications/ds091.pdf
http://direct.xilinx.com/bvdocs/publications/ds091.pdf
http://direct.xilinx.com/bvdocs/publications/ds091.pdf
http://direct.xilinx.com/bvdocs/publications/ds092.pdf
http://direct.xilinx.com/bvdocs/publications/ds093.pdf
http://direct.xilinx.com/bvdocs/publications/ds094.pdf
http://direct.xilinx.com/bvdocs/publications/ds095.pdf
http://direct.xilinx.com/bvdocs/publications/ds096.pdf
http://www.xilinx.com/publications/products/cool2/wp_pdf/wp165.pdf 
http://www.xilinx.com/publications/whitepapers/wp_pdf/wp170.pdf
http://www.xilinx.com/publications/whitepapers/wp_pdf/wp198.pdf

	CipherStream Protocol—How CoolRunner-II CPLDs Protect FPGA IP
	The Problem
	First Step — External Bitstream Encryption
	Attacking the Bitstream Encryption
	Second Step — Simple Steganography
	Attacking the Steganography
	The Third Step— Repartitioning
	Conclusion
	Appendix: Additional Steps for the Insecure and Paranoid
	References
	LFSRs.
	Stream Ciphers Attacks
	Steganography
	Randomness

	Further Reading
	CoolRunner-II Data Sheets
	CoolRunner-II White Papers

	Revision History




