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In today’s world, security is a huge concern for our
global society. Whether boarding a plane, closing the
front door, or beginning your next generation circuit
design, security has become a significant issue. In
our homes, we try to build in the right amount of
security to protect ourselves against theft. Security is
rapidly becoming a necessity in the electronics
industry as well. It is important to understand why
security issues have escalated to the forefront in the
electronics design field. One reason is the alarming
amount of counterfeited goods that are the result of
theft. These goods threaten the economy and have a
significant effect worldwide in the consumer
markets according to the Anti-counterfeiting
Coalition. This white paper identifies the top design
security threats, explores the basic levels of security,
and describes how new, low-cost Spartan®-3A,
Spartan-3AN, and Spartan-3A DSP FPGAs from
Xilinx can help protect your products and profits.

White Paper: Spartan-3A, Spartan-3A DSP, and Spartan-3AN FPGA Families

WP266 (v1.1) April 22, 2008

Security Solutions Using Spartan-3 
Generation FPGAs

By:  Maureen Smerdon

R

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


What are the Financial Impacts of Counterfeiting?

WP266 (v1.1) April 22, 2008 www.xilinx.com  2

R

What are the Financial Impacts of Counterfeiting?
Counterfeiting not only causes a substantial and unrecoverable loss in revenue, it also 
can tarnish a company’s reputation, overload customer support with false products in 
the field, and impact the bottom line with return material authorizations (RMAs) that 
need to be validated and processed. Companies whose product lines have been stolen 
face having to locate the false and potentially unreliable products in order to maintain 
their reputation and image. Future sales are at risk as are the companies’ abilities to 
stay in business. 

The estimated dollar exchange associated with counterfeiting throughout the United 
States during 2003 was $287 billion, which is 63% of the total $456 billion annual 
worldwide figure. In 2004, the World Customs Organization estimated that 
counterfeiting accounted for 5% to 7% of global merchandise trade. This threat 
continues to grow by 12% to 15% a year, resulting in lost revenues due to counterfeit 
products. All industries are affected, including consumer electronics, semiconductor 
devices, batteries, automotive parts, currency, pharmaceuticals, and sporting goods. 
In this white paper, you will learn what’s new from Xilinx to help protect you from the 
top three security threats that designs face today when using low cost FPGAs.

What are the Top Security Breaches?
The top security breaches that designs face today are reverse engineering, overbuilding, 
and cloning. 

Reverse engineering occurs when a thief takes your design with the intent of recreating 
or rebuilding a competitive product and selling it on the open market. The effects of 
reverse engineering are that the perpetrator can build the design much faster, and 
minimize Research and Development costs. This has been the most common threat 
since the genesis of the electronics industry.

Today, as companies have moved to outsource manufacturing, they are subject to new 
security breaches, overbuilding and cloning. Let’s take a look at what those are: 

Overbuilding is a potential concern in an outsourcing business model. In this situation, 
what can occur is unauthorized overbuilding of product that is then sold through 
other channels without the permission of the original equipment manufacturer. The 
obvious challenge here is that this can have very adverse ramifications once this 
product hits the market. Usually, the “overbuilt” products are sold at a lower cost with 
a much faster time-to-market.

Cloning is when a thief creates a duplicate of your design, IP or product under the 
same or different label. The obvious benefit to the cloner is that they incur no Research 
and Development costs and have a drastically reduced time-to-market for the cloned 
product. 
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How Much Security is Enough?
What’s a designer to do? First, it is important to realize that there is no such thing as 
unbreakable security. Ultimately, there is nothing you can do to completely stop a 
determined attacker from breaking a system. If someone wants your data or design, 
they can use brute force to get what they want. This is not the casual hacker, but 
possibly a well-funded government or a well-funded competitor. So with that in mind, 
you will not be creating a solution that can never be broken, but rather one that 
adequately protects you from the threats that you commonly face from cloners, 
overbuilders, and reverse engineers. 

When you think about security, what you need to consider is what is appropriate for 
your needs. If your product cost is $10, there’s a certain amount of security that you 
can afford for a system in this price range versus a system that might cost $10,000. This 
is an evaluation that you need to do. Once you have gone through that evaluation you 
can determine which set of products and which pieces of the security that you might 
wish to implement based on that evaluation. There are a variety of solutions available 
from Xilinx that you can explore to solve your problem from simple to much more 
complex. Solutions that are considered to be the more basic solutions for security 
implementation within the Spartan-3 Generation are addressed in this white paper.

If you wish to explore more advanced techniques, you can refer to our document on 
Advanced Security Techniques using Spartan-3A and Spartan-3AN FPGAs. Beyond 
the Spartan products Xilinx offers an even more advanced solution with our Virtex® 
FPGA products.
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Spartan FPGAs Enable Flexible, Low Cost Security

On-Chip Flash Memory and Hidden Bitstream in Spartan-3AN FPGAs
Spartan-3AN devices provide on-chip Flash memory that can be used to store 
configuration data. If your design does not connect the Flash to the outside world, 
then the Flash cannot be read from the I/O pins. 

The Spartan-3AN device bitstream is hidden during configuration because the Flash is 
inside the FPGA. This configuration provides a starting point for security in a design, 
where it cannot directly be copied from the Flash.

Configuration Security
The simplest way to secure the Spartan-3 device from loading of an unknown 
configuration is to hardwire the mode pins to allow Flash auto-configuration only and 
tie off the data pins. In addition, it is extremely difficult for anyone to directly access 
the pins from a BGA or CS package when all the circuit connections are under the 
package. If the pins are hardwired, a direct assault on the PCB will be required in order 
to load a different configuration.

Bitstream Generator Security Levels
During the test and debug phase of a design, designers can decide to leave the Internal 
Configuration Access Port (ICAP) or the ChipScopeTM Pro analyzer cores in the 
design for possible maintenance or for random check-ups after the design goes into 
production. Some of the software utilities, such as the ChipScope Pro analyzer, require 
these macros for reading the state of internal logic. While this is handy for the 
designer, this can leave a potential security hole. To eliminate this potential hole when 
you go to production, remove the ChipScope Pro core.

The Bitstream Generator creates the configuration .bit file based on the contents of a 
physical implementation file called the NCD file. The .bit file defines the behavior of 
the programmed FPGA. The Bitstream Generator includes many options; one of these 
options is the Security Level settings. The Bitstream Generator has four security level 
settings; the first one is the default, and the remaining three options provide 
additional security. As shown in the following table, Readback operations can be 
disabled completely, or disabled except for limited access options. Table 1 shows the 
security level settings and their functionality.
Table  1:  Bitstream Generator Security Level Settings

Security Level Description

None Default. Unrestricted access to all configuration and Readback 
functions.

Level 1 Disable all Readback functions from both the SelectMAP or JTAG 
ports (external pins). Readback via the ICAP allowed.

Level 2 Disable all Readback operations on all ports.

Level 3

Disable all configuration and Readback functions from all 
configuration and JTAG ports. The only command (in terms of 
Readback and configuration) that can be issued and executed in 
Level3 is REBOOT. This erases the configuration of the device. 
This has the same function as enabling the PROG_B pin on the 
device, except it is done from within the device.
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For a detailed explanation of all the Bitstream Generator options; refer to the
Spartan-3 Generation Configuration User Guide (UG332). 

Device DNA Security
Xilinx offers Device DNA Security in the Spartan-3A/3AN/3A DSP FPGA platforms 
to protect your design, IP, embedded code, and more. The Device DNA is a 57-bit ID, 
unique to every Spartan-3A/3AN/3A DSP FPGA. This ID can be used to tie a design 
to a specific FPGA. The designer’s personalized algorithm, also stored on the FPGA, is 
an arithmetic equation that defines how to take the unique Device DNA and create a 
result. The ID is combined using the designer’s personalized algorithm, and the result 
is then stored wherever the designer chooses, such as in the external memory or 
internal Flash (for Spartan-3AN FPGA devices only). The algorithm is the secret to the 
security because it is known by the designer only. 

Device DNA Operation
Before exploring how security works in each family, it is important to understand 
what is at the core of the solution. Device DNA, unique to Xilinx FPGAs and 
specifically the Spartan-3A/3AN/3A DSP FPGAs, is used for design security. This 
section describes how Device DNA works and how you can protect your future 
designs using our patented new approach.

What is the Device DNA?
The Device DNA is a unique 57-bit identifier that is entered into the 
Spartan-3A/3AN/3A DSP FPGA in the manufacturing process at Xilinx. Every FPGA 
has a unique ID, allowing you to associate your design to one specific FPGA device. 
This security or licensing process is designed with complete flexibility in mind. You 
can easily change your security or licensing process from model to model, thus 
increasing your design security. The read-only Device DNA is accessible through 
either the external JTAG port or the internal DNA port for easy connection to the 
Security Algorithm.

If a cloner or overbuilder copies the bitstream and places it into another FPGA, the 
Device DNA of the new FPGA will be different. After using the algorithm to check the 
Device DNA, the design will return an unauthorized or a failed result, allowing the 
user or designer to determine how to respond to the security breach. 

Device DNA Security Basics
The Device DNA security process is like an ATM transaction. To withdraw money 
from an ATM, you insert your ATM card and enter your PIN on the touch pad. If your 
card and associated PIN match the ID stored at the bank, your transaction is approved 
and your money is available. If the match fails, your transaction is rejected and you do 
not get your money. Figure 1 shows the security flow.
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Both the Security Algorithm and the Device DNA are contained in the 
Spartan-3A/3AN/3A DSP device. Using the Device DNA, the Security Algorithm 
generates the Check Value. Even though Device DNA is 57-bits by default, you can use 
additional bits for increased security. Furthermore, the 64-byte Factory Flash ID 
available on the Spartan-3AN can also be used in the algorithm for increased security. 
The Check Value is then stored anywhere in the system resources (for example, 
configuration memory, peripheral memory, system memory). In the case of a Spartan-
3AN FPGA, the Check Value can also be stored in the one-time programmable 64-byte 
User Defined Field of the Security Register. This register allows the complete security 
system to be self-contained with no need for external interfaces or storage.

Unauthorized Operation
During normal operation, the device is powered up, and the bitstream is loaded for 
configuration of the FPGA. The Security Algorithm reads the Device DNA and 
generates an Active Value. It then compares the Active Value with the Check Value, 
stored during the initial setup. If the Check Value is equal to the Active Value, the 
normal operation can occur. You can design your product to respond in one of the 
following ways when the two values do not match:

• No functionality

The design completely stops functioning. This can be easily implemented in a 
Spartan FPGA by using global control signals like 3-state, Gated Clocks, Flip-flop 
clock enable and so on.

• Limited functionality

The design has partial or basic operation. This is where the key functionality is 
disabled or bypassed. This response allows a third-party test house or contract 
manufacturer to build and test while preventing overbuilding. It also allows the 
system to be run in evaluation or demo mode.

Figure 1: Security Flow
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• Time bomb

The design operates with full functionality for a predetermined amount of time 
before shutting off. This response allows a third-party test house or contract 
manufacturer to build and test. It also allows the system to operate in demo mode 
or for IP evaluation.

• Self-destruction (Spartan-3AN devices only)

Uses Flash sector erase and lockdown protection to erase all sectors and 
permanently lock Flash memory to all zeros. This response prevents repeated 
unauthorized access attempts.

Implementing Security in Spartan-3A FPGA Using Device DNA
This is just one possible scenario for setting up security in your design. We say possible 
because this is similar to deciding on a security system for your home. If there were 
only one possible lock and key in the world, there would be no security. During the 
initial one-time setup process, the Device DNA of the Spartan-3A/3AN/3A DSP 
FPGA can be read via the JTAG port, or from within the fabric of the FPGA. The Check 
Code can then be generated. This code (Check Value) is then stored somewhere in the 
system, such as in configuration or system memory. This can be seen in purple in 
Figure 2, illustrating this possible implementation.

Next we see the Device DNA is blue, and the “secret” Security Algorithm and the 
key/seed code (if that is what you are using in your design) are green. Finally, there is 
a comparator and options for an authorized or for an unauthorized result.

Figure 2: Device DNA Security Example
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This again is just one simple possibility. More complex security can be accomplished 
just as easy.

Security with Spartan-3AN Device DNA and Factory Flash ID
In the Spartan-3AN platform, our non-volatile FPGA, the process is almost the same 
with Spartan-3A devices with a few enhancements. The first security enhancement is 
that the bitstream is hidden inside the FPGA. This makes it more difficult for someone 
to monitor.

The second security enhancement that the Spartan-3AN FPGA has is two unique 
serial numbers, the Device DNA and the Factory Flash ID located in the Flash 
memory. The two unique IDs give more than 70-bytes of serial numbers resulting in a 
much larger number of algorithmic possibilities and, therefore, dramatically increases 
the time needed to breach the Security Algorithm. The design is now specifically tied 
to both the FPGA and the Flash IDs.

Having two unique IDs is like requiring two different ATM cards to get your money. If 
you want to get the cash you must have both cards. If one of the cards is lost then your 
money cannot be taken and is still secure.

The third improvement is in the Stored Check Code. On the Spartan-3AN platform the 
Security Code can be stored on-chip in a special one-time programmable 64-byte User 
Defined Field of the Security Register. This allows the complete security system to be 
self-contained with no need for external interfaces or storage. This feature increases 
the overall security and makes it more difficult for someone to reverse engineer your 
product. 

The Security Algorithm is user defined to allow the designer to implement the right 
level of security at the correct system cost. The Security Algorithm is also the primary 
secret in the security system. Something in the security process must be a secret so that 
security is not breached. Because the algorithm is unknown, it is the key to the design 
level security. The algorithm is implemented in the fabric of the FPGA, therefore, it 
becomes a handful of bits in the millions of configuration bits in the FPGA. Unless you 
know how the bits fit together, or what the algorithm does, it’s just a mass of numbers 
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to an onlooker or cloner. Figure 3 below outlines one possible flow using the Spartan-
3AN devices.

Figure 3: Spartan-3AN Security
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The handling of failed authorization is another one of the strengths of the Device DNA 
design level approach. The additional advantage of design level security is that it can 
be completely integrated into the design. Multiple responses can result from an 
unauthorized design just as in the Spartan-3A platform.

The design level security in the Spartan-3AN platform provides many ways to protect 
from overbuilding, cloning and reverse engineering. In addition to this article, you can 
also learn more about how to secure your low-cost FPGA designs. To learn more about 
designing in security with our three families, please refer to our Spartan-3 Generation 
Configuration User Guide at http://www.xilinx.com/bvdocs/userguides/ug332.pdf 
for more on protecting your designs. For advanced techniques, please refer to White 
Paper 267.

Other Security Solutions from Xilinx 
Virtex-4 and Virtex-5 FPGAs use AES encryption to accomplish their security. Both 
families store the key bits in volatile memory that is kept active with a battery, which 
has very long lifetime. It's interesting that the FIPS 140 standard requires ‘key zeroing,’ 
which automatically occurs with this technology whenever power is disconnected. 
Hence, the parts become unusable with the encrypted bitstream if the power is 
interrupted.

The Virtex-5 family supports 256-bit AES encryption/decryption technology to 
achieve a very high degree of design security. With 1.1 X 1077 possible key 
combinations, an externally intercepted bitstream is highly unlikely to be cloned 
without knowledge of the correct encryption key. 

Conclusion
Security attacks through reverse engineering, overbuilding, or cloning result in 
substantial revenue loss for companies in unrealized sales, returns, and technical 
support. The costs and losses are permanent and unrecoverable. 
Spartan-3A/3AN/3A DSP platforms can help protect your designs from these threats. 
Device DNA security allows you to associate your design to one specific device, 
making security threats less likely. The additional design-level security features in the 
Spartan-3AN platform, including on-chip Flash and hidden bitstream configuration, 
provide additional protection from any security threats. 
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