
XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 1

© 2009 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM Corp.
and is used under license. All other trademarks are the property of their respective owners.

Abstract This application note discusses Linux Operating System debugging techniques. Debugging
boot issues, kernel panics, software and hardware debuggers, driver <-> application
interaction, and various other tools are discussed.

Included
Systems

Included with this application note is one reference system built for the Xilinx ML507 Rev A
board. The reference system is available in the following ZIP file available at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=125262

Introduction This application note discusses Linux Operating System debugging techniques. Software
applications and drivers are included to present debugging material.

General Topics

The application note discusses debugging Linux boot issues, and the use of various Linux
debugging facilities such as strace.

Included Software

buggy_core

The buggy_core application is used to demonstrate techniques for debugging application
crashes. The use of gdb, gdbserver, and coredump analysis are discussed.

buggy_memleak

The buggy_memleak application allocates memory with malloc() and never frees it. This
application is used to discuss memory leak detection and debugging techniques with the
mtrace facility and the Linux /proc filesystem.

buggy_drv

A kernel driver ‘buggy_drv’ is provided as an example of debugging kernel bugs.

buggy_allstrings

The buggy_allstrings application operates with the buggy_drv driver.

buggy_choosestring

The buggy_choosestring application operates with the buggy_drv driver.

Intended
Audience

This application note is best suited to users who are comfortable configuring, building, and
booting Linux on a Xilinx embedded platform.

Application Note: Embedded Processing

XAPP1137 (v1.0) June 9, 2009

Linux Operating System Software
Debugging Techniques with Xilinx
Embedded Development Platforms
Author: Brian Hill

R

www.BDTIC.com/XILINX

https://secure.xilinx.com/webreg/clickthrough.do?cid=125262
http://www.xilinx.com

Hardware and Software Requirements

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 2

R

Hardware and
Software
Requirements

The hardware requirements for this reference system are:

 Xilinx ML507 Rev A board

 Xilinx Platform USB or Parallel IV programming cable

 RS232 serial cable and serial communication utility (HyperTerminal)

 Xilinx Platform Studio 11.1

 Xilinx Integrated Software Environment (ISE®) 11.1

 MontaVista Linux 5.0 (Linux kernel 2.6.24)

Reference
System
Specifics

See Table 1 for the address map of the system.

Address Map

Executing the
Reference
System

Using HyperTerminal or a similar serial communications utility, map the operation of the utility to
the physical COM port to be used. Then connect the UART of the board to this COM port. Set
the HyperTerminal to the Bits per second to 9600, Data Bits to 8, Parity to None, and Flow
Control to None. The settings are shown in Figure 1. This is necessary to see the results from
the software application.

Table 1: Reference System Address Map

Peripheral Instance Base Address High Address

ppc440mc_ddr2 DDR2_SDRAM 0x00000000 0x0FFFFFFF

xps_gpio Push_Buttons_5Bit 0x81400000 0x8140FFFF

xps_iic IIC_EEPROM 0x81600000 0x8160FFFF

xps_intc xps_intc_0 0x81800000 0x8180FFFF

xps_ll_temac Hard_Ethernet_MAC 0x81C00000 0x81C0FFFF

xps_uart16550 RS232_Uart_1 0x83E00000 0x83E0FFFF

xps_bram_if_cntlr xps_bram_if_cntlr_1 0xFFFFC000 0xFFFFFFFF

X-Ref Target - Figure 1

Figure 1: HyperTerminal Settings

X1137_01_060109

www.BDTIC.com/XILINX

http://www.xilinx.com

XMD and TCL Scripting

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 3

R

Executing the Reference System using the Pre-Built Bitstream and the
Compiled Software Application

To execute the system using files in the ready_for_download/ directory in the project root
directory, follow these steps:

1. Change directories to the ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following command:

impact -batch xapp1137.cmd

3. Invoke XMD and connect to the PowerPC® 440 processor by using the following command:

xmd -opt xapp1137.opt

4. Download the executable by using the following command depending on the software
application:

 dow zImage.initrd

5. Enter in the run command to run the software application.

Executing the Reference System from XPS for Hardware

To execute the system for hardware using XPS, follow these steps:

1. Open system.xmp in XPS.

2. Select HardwareGenerate Bitstream to generate a bitstream for the system.

3. Select Device ConfigurationDownload Bitstream to download the bitstream.

4. Select DebugLaunch XMD to invoke XMD.

5. Download the executable file by using the following command depending on the software
application:

 dow zImage.initrd

6. Enter in the run command to run the software application.

XMD and TCL
Scripting

This section of the software debugging document is meant to introduce some of the capabilities
of TCL scripting within XMD. The TCL language is beyond the scope of this document.

XMD includes a TCL parser. TCL is a full featured industry standard scripting language. This
combination provides powerful debugging possibilities. All the functionality of XMD (read/write
registers, memory, and memory mapped devices, breakpoints, etc...) is available to user-
supplied scripts which can enhance the base functionality of XMD. Any valid TCL command
can be entered interactively at the XMD prompt:

XMD% expr 8 + 1
9
XMD% puts "hello world"
hello world

By writing TCL procedures, it is possible to extend XMD.

XMD% proc myprocedure {mynumber1 mynumber2} {
> set retval [expr $mynumber1 + $mynumber2]
> return $retval
> }
XMD%
XMD% myprocedure 8 1
9

www.BDTIC.com/XILINX

http://www.xilinx.com

XMD and TCL Scripting

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 4

R

The script files can be loaded into XMD (rather than typing them in, as above) with the source
command:

XMD% source <myscriptfile.tcl>
XMD% myprocedure 8 1
9

The real power of XMD becomes evident when scripting is combined with the ability of XMD to
access CPU registers and memory. XMD can access CPU registers interactively, as shown
below:

XMD% rrd msr
 msr: 00000000

This command reads the PPC440 MSR register. The small script shown below is an example
of how to use this ability to access registers or memory to display information:

Read PPC440 MSR Register and examine the EE bit.
Print in plain English if External Exceptions (interrupts) are presently
enabled.
proc ppc440_intenable_print {} {
 # Read the MSR register. Trim off extra text, keeping only the number.
 # " msr: 12345678 " becomes "12345678"
 set regval [string trimleft [rrd msr] "msr: "]

 # make the number read above appear like conventional hexadecimal
 # "12345678" becomes "0x12345678"
 set regval [format "0x%08x" 0x$regval]

 puts -nonewline "PPC External Interrupts "
 # Test the 'EE' bit
 if {$regval & 0x00008000} {
 puts "ENABLED"
 } else {
 puts "DISABLED"
 }
}

This simple example script is provided in the xmd_tcl_scripts directory as
ppc440_intenable_print.tcl. If presently in the ready_for_download directory, the
script would be loaded as shown below:

XMD% source ../../xmd_tcl_scripts/ppc440_intenable_print.tcl

When the procedure is executed, human-readable state information is displayed:

XMD% ppc440_intenable_print
PPC External Interrupts DISABLED
XMD%

When XMD starts, it automatically executes any TCL commands in a file called.xmdrc (if it
exists). This file should be placed in the user’s home directory. Commands can be placed here
to source all of the debugging scripts when XMD is started.

This application note includes several TCL scripts found in the xmd_tcl_scripts directory
for use with XMD as debugging aids for Xilinx embedded systems. These scripts display CPU
and peripheral register values, and decode many register fields. To utilize these scripts, copy
dotxmdrc from the xmd_tcl_scripts directory to $HOME/.xmdrc. The user may also want
to copy the xmd_tcl_scripts directory to a more general area apart from where the project
was unzipped.

An example, as entered from the EDK Shell within the xmd_tcl_scripts directory, is shown:

$ cp dotxmdrc $HOME/.xmdrc

www.BDTIC.com/XILINX

http://www.xilinx.com

Patch the kernel

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 5

R

The user’s.xmdrc file should be edited to reflect the directory where these TCL scripts have
been placed.

Now, when XMD is started, these scripts alert the user about the new commands that are
available:

$ xmd
...
Loading custom commands from c:/data/tcl:
mem_read_byte
mem_write_byte
mem_read_hwd
memcpy
hexdump
ppc405_print
ppc405_rm_sa_print
ppc405_read_tlb
ppc405_dcache_print
ppc440_print
ppc440_read_tlb
ppc440_dcache_print
ppc440_dcache_match
ppc_bt
ppc_dis
mb_print
mb_bt
emaclite_print
lltemac_print
lltemac_read_phy
lltemac_stats
marvell_phy_print
marvell_phy_probe
national_phy_print
national_phy_probe
lldma_mm_print
lldma_desc_print
uartlite_print
uartns550_print
xps_intc_print
xiic_print
xiic_read_byte
xiic_write_byte
ipv4_packet_decode
en_packet_decode
csum16
XMD%

Note: The remainder of this application note assumes that the user has configured XMD as described in
this section.

Patch the kernel The 2.6.24 Linux kernel does not initialize the PowerPC processor DBCR0 register. The value
placed here by XMD is not suitable for use with Linux. The Linux kernel is patched for proper
operation. Edit <Linux> /arch/powerpc/kernel/head_44x.S and make the additions
shown in red:

 SET_IVOR(15, Debug);

 /* Establish the interrupt vector base */
 lis r4,interrupt_base@h /* IVPR only uses the high 16-bits */
 mtspr SPRN_IVPR,r4

www.BDTIC.com/XILINX

http://www.xilinx.com

Build a kernel image

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 6

R

#if !defined(CONFIG_BDI_SWITCH)
 /*
 * The Abatron BDI JTAG debugger does not tolerate others
 * mucking with the debug registers.
 */
 lis r2,DBCR0_IDM@h
 mtspr SPRN_DBCR0,r2
 isync
 /* clear any residual debug events */
 li r2,-1
 mtspr SPRN_DBSR,r2
#endif

 /*
 * This is where the main kernel code starts.
 */

 /* ptr to current */
 lis r2,init_task@h
 ori r2,r2,init_task@l

The system provided with this application note include the XPS Local Link Tri-Mode Ethernet
core version 2.00.a. The Linux 2.6.24 kernel must be patched for proper operation with this
version of the core. Edit <Linux>/drivers/net/xilinx_lltemac/xlltemac_main.c
and make the modifications shown in red:

#define BdGetRxLen(BdPtr) \
 (XLlDma_mBdRead((BdPtr), XLLDMA_BD_USR4_OFFSET) & 0x3FFF)

Build a kernel
image

The user will build a zImage.initrd executable using the steps shown. This image will not
successfully boot. The cause of the problem will be analyzed in “Debugging Kernel Boot
Issues”.

Build zImage.initrd

Copy the provided ramdisk, kernel configuration, and device tree to the kernel tree.

1. cp <edk project>/ready_for_download/dotconfig <Linux> /.config

2. cp <edk project>/ready_for_download/ml507.dts
<Linux>/arch/powerpc/boot/dts/ml507.dts

3. cp <edk project>/ready_for_download/ramdisk.image.gz
<Linux>/arch/powerpc/boot/ramdisk.image.gz

4. cp -a <work area>/buggy_drv <Linux>/drivers/char/

5. Add the following to <Linux>/drivers/char/Kconfig:

config BUGGY_DRV_EXAMPLE
 bool "Buggy Driver Example"
 help
 Example driver to demonstrate kernel debugging.

6. Add the following to <Linux>/drivers/char/Makefile

obj-$(CONFIG_BUGGY_DRV_EXAMPLE) += buggy_drv/

7. cd <Linux>

8. make ARCH=powerpc menuconfig

9. Enable Device Drivers -> Character devices -> Buggy Driver Example

10. make ARCH=powerpc zImage.initrd

Note: A previously generated image, zImage.initrd-noboot is provided in the ready_for_download
area.

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Kernel Boot Issues

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 7

R

Debugging
Kernel Boot
Issues

Users frequently encounter issues booting the Linux kernel. This can be due to an improper
kernel configuration, inconsistencies in the hardware description, an improperly created Root
File System, and various other causes. Boot issues can be difficult to debug because many of
the tools generally available to debug Linux issues can not be used during the boot process.

This application note utilizes a simple Linux image with a compressed kernel, ramdisk, and
device tree all bundled in a single ELF file. In MontaVista 5.0, this file is named
zImage.initrd.

Note: The name of this bootable image varies with different Linux distributions.

To successfully debug boot issues, the user should understand how a zImage is booted. Refer
to Figure 2 for this topic.

Booting a zImage
Note: This document describes a Xilinx ML507 system using a PowerPC 440 processor with MontaVista
Linux 5.0 (Linux 2.6.24). Other processors, Linux distributions, and kernel versions will be similar but may
vary.

The zImage.initrd executable is a simple Linux loader which contains the compressed
kernel and device tree images embedded within it. The loader does not perform any TLB
configuration; a 1:1 TLB mapping must already have been performed elsewhere (XMD
performs this function). The function of the loader is to perform some minimal hardware setup

X-Ref Target - Figure 2

Figure 2: Linux PowerPC Processor zImage Boot Process

zimage.initrd ELF file

vmlinux

Kernel Virtual Address
CONFIG_KERNEL_START 0xC0000000

Physical Address
0x00000000

simple loader

Compressed vmlinux

Device Tree

X1137_02_060109

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Kernel Boot Issues

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 8

R

and uncompress the vmlinux (kernel) image to the start of physical memory -- 0x00000000
and launch it.

The absolute entry point of the loader is _start, found in arch/powerpc/boot/crt0.S.
Where the zImage.initrd executable is linked depends upon the size of the kernel image
embedded within it. A typical link location for the start of the image would be 0x04000000, but
addresses such as 0x08000000, etc... can be seen. The address is aligned to the 4MB
boundary beyond the uncompressed kernel size used.

Experiencing a problem with booting Linux may not be a problem with the kernel at all; the error
could have occurred in the loader, before the kernel was even launched. Control is given to the
kernel proper at the end of start() in arch/powerpc/boot/main.c, where the loader
branches to 0x00000000. The first instructions of the kernel proper are in _start, located in
arch/powerpc/kernel/head_44x.S. The kernel is actually linked to 0xC0000000
(CONFIG_KERNEL_START), not 0x00000000. The kernel will create a mapping of
0xC0000000 -> 0x00000000 very early in its initialization. The first ‘C’ function found in the
kernel is start_kernel() in init/main.c

It is vital to consider that there are two ELF executables involved, with two separate symbol
tables. The zImage.initrd bootable image found in <Linux>/arch/powerpc/boot/
and the kernel itself <Linux>/vmlinux. This point is discussed when symbolic kernel
debugging is presented.

Download and run the zImage

Download and run the generated zImage.initrd using XMD, following the steps outlined in
“Executing the Reference System”.

XMD% dow zImage.initrd
XMD% run

Note: If the user has not completed the steps in “Build a kernel image” a prebuilt image
zImage.initrd-noboot has been provided in the ready_for_download area.

The console displays the output shown, and nothing more. Linux has failed to boot properly.

booting virtex
memstart=0x10
memsize=0xf

zImage starting: loaded at 0x00400000 (sp: 0x00899eb8)
Allocating 0x308428 bytes for kernel ...
gunzipping (0x00000000 <- 0x0040d000:0x0056b234)...done 0x2e63d4 bytes
Attached initrd image at 0x0056c000-0x00898e18
initrd head: 0x1f8b0808

Linux/PowerPC load: console=ttyS0,9600 ip=192.168.0.10 root=/dev/ram rw
Finalizing device tree... flat tree at 0x8a6300

None of the messages generated were produced by the Linux kernel. The last message seen,
“Finalizing device tree...” was printed by the loader in start(), which is found in
<Linux>/arch/powerpc/boot/main.c. Nothing seen so far indicates that the loader has
even launched the Linux kernel.

The Program Counter register is examined.

XMD% rrd pc
 pc: c00098e0

The last instruction executed was at memory location 0xC00098E0. The nm command is used
to display all symbols in an object file with the addresses chosen by the linker.

$ cd <Linux>/arch/powerpc/boot/
$ ppc_440-nm --numeric-sort zImage.initrd > zImage.initrd.sym

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Kernel Boot Issues

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 9

R

The file zImage.initrd.sym is created. It is seen that symbols in this executable start at
0x00400000 and extend approximately 4MB beyond this start. Kernel virtual address space
begins at 0xC0000000. It is very likely that the loader has completed its task and that the
failure occurred while executing kernel code, not the loader. The symbols from vmlinux must
be examined, not those in zImage.initrd. A symbol listing is automatically generated when
the kernel is built and can be found in <Linux>/System.map.

Note: System.map-noboot is provided in the ready_for_download area.

Examining System.map, it is seen that 0xC00098E0 is somewhere within the body of the
__delay() procedure.

c00098b4 T __plb_disable_wrp
c00098c8 T __delay
c00098f8 T udelay

This function does not indicate what the problem is. Use the ppc_bt script to display a function
called backtrace by examining what is on the stack.

Note: The script should already be available if the user has completed the steps in “XMD and TCL
Scripting”.

XMD% ppc_bt
PC: 0xc00098e0
LR: 0xc001f030
R1: 0xc02e3d20 0xc001f000
R1: 0xc02e3d70 0xc0023b08
R1: 0xc02e3db0 0xc000b09c
R1: 0xc02e3de0 0xc000b34c
R1: 0xc02e3ed0 0xc000d7e4
R1: 0xc02e3f90 0xc02a7224
R1: 0xc02e3fb0 0xc02a27c0

The user could manually use the nm command as already described to match these addresses
to source code. The ppc_bt script will automatically attempt to match addresses to symbols in
the most recently downloaded elf executable, in this case zImage.initrd. Since kernel
symbols are not present in this elf, the user must specify that vmlinux is to be used for
symbols. If the user is presently in the <Linux>/arch/powerpc/boot directory, the
following command is issued:

XMD% set elf_file ../../../vmlinux

Obtain a symbolic back trace

XMD% ppc_bt
PC: 0xc00098e0 __delay time.h:97
LR: 0xc001f030 panic panic.c:145
R1: 0xc02e3d20 0xc001f000 panic panic.c:145
R1: 0xc02e3d70 0xc0023b08 do_exit exit.c:987
R1: 0xc02e3db0 0xc000b09c kernel_bad_stack traps.c:1142
R1: 0xc02e3de0 0xc000b34c _exception traps.c:187
R1: 0xc02e3ed0 0xc000d7e4 ret_from_except_full entry_32.S:644
R1: 0xc02e3f90 0xc02a7224 xilinx_intc_init_tree xilinx_intc.c:143
R1: 0xc02e3fb0 0xc02a27c0 init_IRQ irq.c:343
XMD%

A serious error has caused the kernel to panic(). The approximate location of the error appears
to be in the function xilinx_intc_init_tree() located in xilinx_intc.c line 143. Note that this is
an approximate location for several reasons. The kernel can not be compiled without
optimization. The minimum optimization level which can be used is -O1. The higher the
compiler optimization used, the more difficult it is to match an assembly instruction to a line of
source code.

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Kernel Boot Issues

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 10

R

When a kernel panic occurs, Linux is expected to display some debugging information on the
console. No message has appeared. This can occur when critical errors happen before Linux
is sufficiently initialized to send text to the console. Even though no message has appeared, a
message should still have been placed in the kernel syslog buffer.

Using GDB to debug kernel boot problems

XMD provides a GDB Server. This server is not suitable for general purpose Linux debugging
for a variety of reasons, but it is still a useful tool to debug Linux boot issues.

Start GDB. GDB is used in textual mode as indicated by the -nw switch. The kernel elf
vmlinux is specified, not zImage.initrd.

$ powerpc-eabi-gdb -nw vmlinux

Inform GDB that the processor it will be debugging the a PowerPC 440 processor by using the
command:

(gdb) set processor powerpc:440

Note: If a third party version of GDB which does not explicitly support the PowerPC 440 processor is
used, the user should choose powerpc:common instead.

Next, have GDB connect to the target -- in this case the GDB server within XMD. Because this
is a network connection, GDB and XMD can be running on different machines:

(gdb) target remote localhost:1234

GDB displays the present program status:

Connected to a PPC440 target.
__delay (loops=100000) at include/asm/time.h:97
97 return mftbl();
(gdb)

It is immediately seen that execution has halted in the __delay() function, as was observed with
XMD.

GDB Macros

GDB has a macro feature. The following is a simple example:

(gdb) define hello_macro
Type commands for definition of "hello_macro".
End with a line saying just "end".
>printf "hello world\n"
>end

The defined macro, consisting of any valid GDB command, can now be executed as desired:

(gdb) hello_macro
hello world
(gdb)

This feature is utilized to ease cumbersome tasks. The scripts may be sourced from a text file.
The following script, provided in log.txt, will display the present Linux syslog:

display Linux syslog
define syslog
 set $size = sizeof(__log_buf)
 # Go through the buffer a byte at a time, until a NULL is encountered.
 set $byte = 0
 while ($byte < $size)
 printf "%c", log_buf[$byte++]

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Kernel Boot Issues

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 11

R

 # End of string?
 if (log_buf[$byte] == 0)
 # Exit loop
 set $byte = $size
 end
 end
end

The macro is loaded as follows:

(gdb) source ../../gdb_macros/log.txt

The Linux syslog is displayed:

(gdb) syslog

Note: This operation will not complete quickly.

<0>------------[cut here]------------
<2>kernel BUG at arch/powerpc/sysdev/xilinx_intc.c:150!
<4>stopped custom tracer.
<4>Oops: Exception in kernel mode, sig: 5 [#1]
<4>PREEMPT Xilinx Virtex
<4>Modules linked in:
<4>NIP: c02a71c4 LR: c02a7224 CTR: c02a7140
<4>REGS: c02e3ee0 TRAP: 0700 Not tainted (2.6.24_pro5024-ml507)
<4>MSR: 00021000 <ME> CR: 22002242 XER: 20000000
<4>TASK = c02c04b0[0] 'swapper' THREAD: c02e2000
<6>GPR00: 00000001 c02e3f90 c02c04b0 00000000 c08a7230 c08a72a9 c02f6894
00000000
<6>GPR08: c02d31d0 00000000 c08a722b 00000051 22002242 100ac364 0ffcfa00
0ffde000
<6>GPR16: c026056c c0260554 cf81fd88 c0263868 0fe9d429 00000002 0ffc981c
00000000
<6>GPR24: 00000000 0056c000 00000de0 c02eda78 c02f0000 c025fcbc 00000000
00000000
<4>NIP [c02a71c4] xilinx_intc_init_tree+0x84/0x134
<4>LR [c02a7224] xilinx_intc_init_tree+0xe4/0x134
<4>Call Trace:
<4>[c02e3f90] [c02a7224] xilinx_intc_init_tree+0xe4/0x134 (unreliable)
<4>[c02e3fb0] [c02a27c0] init_IRQ+0x24/0x34
<4>[c02e3fc0] [c029c964] start_kernel+0x190/0x2c0
<4>[c02e3ff0] [c0000254] skpinv+0x1fc/0x238
<4>Instruction dump:
<4>41920078 7fc4f378 38a00000 7fe3fb78 4beee855 38800000 2f830000 7fa5eb78
<4>7fe3fb78 409effd0 7c000026 54009ffe <0f000000> 7fe3fb78 4bfffe89
3d20c02f
<4>---[end trace 8640abe69a316dee]---

The syslog shows an assertion failure in xilinx_intc.c line 150 because no compatible
interrupt controller was found in the device tree:

void __init xilinx_intc_init_tree(void)
{
 struct device_node *np;

 /* find top level interrupt controller */
 for_each_compatible_node(np, NULL, "xlnx,opb-intc-1.00.c") {
 if (!of_get_property(np, "interrupts", NULL))
 break;

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Kernel Boot Issues

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 12

R

 }
 if(!np) {
 for_each_compatible_node(np, NULL, "xlnx,xps-intc-1.00.a") {
 if (!of_get_property(np, "interrupts", NULL))
 break;
 }
 }

 /* xilinx interrupt controller needs to be top level */
 BUG_ON(!np);

 master_irqhost = xilinx_intc_init(np);
 BUG_ON(!master_irqhost);

 irq_set_default_host(master_irqhost);
 of_node_put(np);
}

View the syslog with XMD

The Linux syslog buffer can also be viewed with XMD. The script linux-syslog.tcl provided with
this application note performs this task. If the user has completed the steps in “XMD and TCL
Scripting” this script will already be available for use.

Note: The output shown assumes that the user is presently in the <Linux>/arch/powerpc/boot
directory.

XMD% set elf_file ../../../vmlinux
XMD% stop
XMD% linux_syslog
Displaying Linux syslog buffer of 0x00004000 length at 0xc02f005c
<6>Using Xilinx Virtex machine description
...

Correcting the problem

A specific version of the XPS intc peripheral was expected to be found in the device tree system
description, and it was not present. The BUG_ON() macro causes the system to panic(); a fatal
error. It accomplishes this using the PowerPC processor trap instruction (twnei).

Edit <Linux>/arch/powerpc/boot/dts/ml507.dts, making the modifications shown in
red:

 xps_intc_0: interrupt-controller@81800000 {
 #interrupt-cells = <0x2>;
 compatible = "xlnx,xps-intc-2.00.a", "xlnx,xps-intc-1.00.a";
 interrupt-controller ;
 reg = < 0x81800000 0x10000 >;
 xlnx,num-intr-inputs = <0x5>;
 } ;

The compatible line is a list of conforming devices. The system provided with this application
note contains version 2.00.a of the XPS Interrupt Controller. The driver has no direct support for
this version of the device, so it is necessary for the device tree to also list version 1.00.a as a
conforming device for the driver to recognize this core in the system. The system will not
function without an interrupt controller present.

Rebuild zImage.initrd and boot the new image. The login prompt should appear. Log in as
‘root’. There is no password.

www.BDTIC.com/XILINX

http://www.xilinx.com

Using strace

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 13

R

Using strace Identifying the Problem

When debugging, it is often advantageous to have more than one console available. To achieve
this, the user will telnet into the ML507 board and login over the network. The system has been
statically assigned the IP address of 192.168.0.10 in the device tree:

chosen {
 bootargs = "console=ttyS0,9600 ip=192.168.0.10 root=/dev/ram rw";
 linux,stdout-path = "/plb@0/serial@83e00000";
 } ;

The host has been assigned 192.168.0.1 in the examples shown in this application note.

Note: The user may wish for the embedded board to use DHCP or assign it a static address suitable to
a locally established network. IP addressing is beyond the scope of this application note.

Verify that the network is operational by pinging the embedded board from the host PC:

$ ping 192.168.0.10

Pinging 192.168.0.10 with 32 bytes of data:

Reply from 192.168.0.10: bytes=32 time=4ms TTL=64
Reply from 192.168.0.10: bytes=32 time=2ms TTL=64
Reply from 192.168.0.10: bytes=32 time=2ms TTL=64
Reply from 192.168.0.10: bytes=32 time=2ms TTL=64

Ping statistics for 192.168.0.10:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 2ms, Maximum = 4ms, Average = 2ms

Attempt to telnet into the embedded board:

$ telnet 192.168.0.10

The attempt will fail. No error is shown. The network has been shown to be operational with a
successful ping. The root file system on the embedded board must be incorrect in some way.

When successful, the telnet daemon telnetd is started by inetd unpon a new incoming telnet
connection. Verify that inetd is running:

ps | grep inetd
 452 root /usr/sbin/inetd

Verify that inetd is configured to start telnetd when a new connection arrives:

grep ^telnet /etc/inetd.conf
telnet stream tcp nowait telnetd /usr/sbin/telnetd telnetd -l
/bin/sh

Verify that the telnet service has been assigned the expected TCP port, 23:

grep ^telnet /etc/services
telnet 23/tcp

The configuration is correctly specified, but telnet connections still fail. Additional visibility is
needed to determine why it has failed.

STRACE

www.BDTIC.com/XILINX

http://www.xilinx.com

Using strace

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 14

R

The strace utility is used to trace system calls and signals. All user applications, such as inetd
and telnetd, request services from the kernel using system calls. Common system calls include
open (open a file), close (close a file), read (read a file), close (close a file), and so forth.

Kill the presently running inetd. The previous ps command determined that in this particular
instance this was process 452:

kill -9 452

Start inetd with strace. The -f (follow fork) option is used because we wish to see the system
calls made by child processes spawned by inetd (telnetd).

strace -f inetd

Wait until inetd reaches a steady state. The many system calls made will scroll until inetd waits
in its select() loop:

select(8, [4 5 6 7], NULL, NULL, NULL)

At this time, telnet to the ML507 from the host and observe the system calls made. Among the
many system calls, it is seen that the child process could not open /dev/ptmx. This device is
used to create a new pseudo terminal.

[pid 494] open("/dev/ptmx", O_RDWR|O_LARGEFILE) = -1 EACCES (Permission
denied)

Kill the strace process with a ^C. Examine the file permissions on /dev/ptmx:

ls -l /dev/ptmx
crw-rw---- 1 root root 5, 2 Jan 1 00:00 /dev/ptmx

The telnetd process is run as user telnetd, not user root. It does not have access to
/dev/ptmx.

How to Solve the Problem

Make /dev/ptmx world accessible:

chmod a+rw /dev/ptmx
ls -l /dev/ptmx
crw-rw-rw- 1 root root 5, 2 Jan 1 00:00 /dev/ptmx

Telnet into the ML507 from the host:

MontaVista(R) Linux(R) Professional Edition 5.0.24 (0802884)
Linux/ppc 2.6.24_pro5024-ml507

/ $
/ $ whoami
telnetd
/ $

Modifying the Root File System

The proper file permissions on /dev/ptmx must be made permanently to the root filesystem
image bundled in the zImage.initrd executable. The user must have root permission to
perform this task.

1. cd <Linux>/arch/powerpc/boot

2. Uncompress and mount the ramdisk image

a. gunzip ramdisk.image.gz

b. mkdir ramdisk_mnt

c. mount -o loop ramdisk.image ramdisk_mnt

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 15

R

3. Perform any desired modifications to the root filesystem. This system has been configured
to use udev. The appropriate udev configuration file is edited to enable incoming telnet
connections.

a. cd ramdisk_mnt/etc/udev/rules.d

b. Edit devfs.rules to include the configuration shown in red:

KERNEL=="ptmx", MODE="0666", GROUP="tty"

4. Unmount and compress the ramdisk image

a. umount ramdisk_mnt

b. gzip ramdisk.image

5. Create a new zImage.initrd executable.

a. cd <Linux>

b. make ARCH=powerpc zImage.initrd

Debugging user
applications

The application buggy_core is designed to “crash”. It will attempt to access memory outside of
its address space, causing a segmentation violation.

buggy_core
buggy_core:
Segmentation fault
#

Using gdbserver

To debug application software bugs the gdbserver application, a remote server for GDB, is
used. GDB running on the host is used to debug an application run on the embedded board.
GDB can communicate to a remote server through a serial port or over the network, as was
seen in “Using GDB to debug kernel boot problems” where GDB communicated with the GDB
server present within XMD.

Note: XMD is not suitable for debugging Linux user applications. It is unaware of Linux processes and
can not natively access or modify Linux page tables upon demand.

Stripped binaries

The buggy_core application found on the ramdisk on the embedded target has been stripped.
The strip utility removes all symbols and debugging information from an executable. This
makes the executable much smaller. Stripped executables by themselves are virtually useless
to a debugger.

Examine the executable on the ramdisk:

ls -l buggy_core
-rwxr-xr-x 1 root root 4076 Apr 20 13:45 buggy_core
#

Compare this to the unstripped executable:

$ cd <EDK Project>/buggy_core
$ ls -l buggy_core-unstripped
-rwxr-xr-x 1 root root 13184 Apr 20 13:45 buggy_core-unstripped

The unstripped executable is approximately three times the size of the stripped executable.

Launch the application with gdbserver:
gdbserver localhost:1234 buggy_core
Process buggy_core created; pid = 480
Listening on port 1234

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 16

R

The “localhost:1234” option indicates to gdbserver that the remote debugger will connect over
the network. The GDB server will listen for connections on port 1234.

Connect to the gdbserver

Start GDB on the host using the unstripped binary:

$ powerpc-eabi-gdb -nw buggy_core-unstripped

Connect to the gdbserver

(gdb) target remote 192.168.0.10:1234
Remote debugging using 192.168.0.10:1234
Using default architecture powerpc:405
[New thread 480]
0x48016084 in ?? ()
(gdb)

Continue program execution and await the crash:

(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0xdeadbeec in ?? ()

The program has attempted to execute code at 0xDEADBEEC, which is out of the address
space of the application. Direct GDB to display a function call backtrace:

(gdb) bt
#0 0xdeadbeec in ?? ()
#1 0x1000042c in crashfunc ()
#2 0x1000047c in main ()

The branch to the illegal address occurred in the function crashfunc(). Examining the source,
the location is shown in red:

void crashfunc()
{
 void (*fp)() = (void*)0xDEADBEEF;

 /*
 * Attempt to call function at 0xDEADBEEF. This will cause a SEGV
 */
 (*fp)();
}

Debugging Problems in the Field

It will not always be possible to debug an application interactively with gdbserver. In these
situations, a core file from the application which has crashed is generated and retrieved from
the embedded board for later analysis.

When buggy_core was run previously no coredump was generated. This is because the default
behavior is to limit the coredump size (in this case to 0 bytes). Limits are viewed and set with
the ulimit command:

ulimit -a
time(seconds) unlimited
file(blocks) unlimited
data(kb) unlimited
stack(kb) 8192
coredump(blocks) 0
memory(kb) unlimited
locked memory(kb) 32
process 2048

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 17

R

nofiles 1024
vmemory(kb) unlimited
locks unlimited

Change the coredump size to unlimited. In this way, coredump size is limited only by space
available in the file system.

ulimit -c unlimited

Run buggy_core

buggy_core
buggy_core:
Segmentation fault (core dumped)

Unlike previously, this time Linux indicates that a core file has been generated.

ls -l core
-rw------- 1 root root 159744 Jan 1 16:50 core

There are various ways to fetch this file from the embedded board. The user will find NFS a
convenient tool when debugging. Configuring and using NFS are beyond the scope of this
application note. To copy the core file to the host for remote debugging TFTP is used.

Configure the TFTP server

All material provided in this section pertaining to configuration of the TFTP server is intended
as a quick reference only. Users which are unfamiliar with these concepts may need additional
reference material.

Linux

Typical Linux server installations will provide an already configured TFTP server. Files placed in
the /tftpboot directory are available to TFTP clients. By default, clients are not allowed to
upload files. This configuration must be changed if TFTP is to be used to upload core files from
the embedded board.

Note: Obtaining, installing, and configuring a Linux TFTP server is beyond the scope of this application
note. The steps shown are a general guideline only. If the user wishes to use a Linux TFTP server they
should consult the pertinent documentation.

The TFTP server must be configured to permit the creation of files. This is done by starting the
server with the -c command line option. If the server in question uses xinetd this is
accomplished with a /etc/xinetd.d/tftp config file like shown:

service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -c -s /tftpboot
 disable = no
 per_source = 11
 cps = 100 2
 flags = IPv4
}

If the server in question uses inetd rather than xinetd the configuration found in
/etc/inetd.conf should resemble this:

<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>
tftp dgram udp wait nobody /usr/sbin/in.tftpd in.tftpd -c -s /tftpboot

Inetd or xinetd must be restarted after this modification to their configuration files.

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 18

R

The /tftpboot directory is typically owned by ‘root’. It must be world writable or clients will
not be able to create files there. The TFTP server runs as user ‘nobody’.

chmod 777 /tftpboot
ls -ld /tftpboot
drwxrwxrwx 3 root root 4096 Apr 15 09:45 /tftpboot/

Microsoft Windows

Windows has no traditional TFTP server. TFTPD32, which is freely available from
http://tftpd32.jounin.net is recommended for use with this application note. It requires no
installation and can be run directly from the directory in which it has been downloaded.

Transfer the core file

Transfer the core file generated in “Debugging Problems in the Field” from the embedded board
to the tftp server.

tftp -pr core 192.168.0.1

Note: The tftp client implementation on the embedded board (busybox) does not use the standard Linux
tftp command line arguments.

Analyze the core file

Start gdb, specifying the core file to use.

$ ppc_440-gdb -nw buggy_core-unstripped /tftpboot/core

Note: The GDB shipped with EDK does not support core files; it is necessary to use the GDB supplied
by MontaVista.

Obtain a backtrace:

(gdb) bt
#0 0xdeadbeec in ?? ()
#1 0x1000042c in crashfunc () at buggy_core.c:21
#2 0x1000047c in main (argc=1, argv=0xbfde2e44) at buggy_core.c:28

As observed previously, the branch to the invalid address occurred in the procedure
crashfunc().

Debugging Memory Leaks

Most software of any complexity will require dynamic memory allocation where the memory
allocated is more persistent than the life of a single function call (as happens with the stack).
The well known libc functions malloc() and free() are used to dynamically carve up a block of
dynamic memory known as the heap. One of the more difficult software errors to track down is
a memory leak. A memory leak occurs when memory which was allocated for a transient
purpose is never freed, and is therefore lost to the system until the process is terminated.
Eventually no memory will be left in the pool, and all calls to malloc() will fail. If the memory
utilization of a process has not been limited with the ulimit command, one process can use all
system resources, to the detriment of the entire system.

The application buggy_memleak performs several memory allocations in different functions.
The functions mtrace() and muntrace() are used to gather memory allocation statistics. Any
calls to malloc() and free() are recorded when tracing is enabled.

 mtrace();

 ... calls to malloc() and free() logged...

 muntrace();

Calls are recorded to the file indicated in the environment variable MALLOC_TRACE. No
memory allocation statistics are gathered if this environment variable has not been set.

www.BDTIC.com/XILINX

http://www.xilinx.com
http://tftpd32.jounin.net

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 19

R

Application ‘buggy_memleak’

Run the buggy_memleak application:

export MALLOC_TRACE=malloc-log.txt
buggy_memleak
buggy_memleak:
Press <enter> to perform memory allocations:

The application will wait for a keypress before proceeding. Do not press any key at this time.
Telnet into the embedded board from the host PC. The embedded board has been assigned a
static IP address of 192.168.0.10. The user must have successfully completed the steps in
“STRACE” to be able to successfully telnet to the board.

From the telnet window, run the ‘free’ command. This will display the amount of physical
memory in use at this time (before buggy_memleak has performed it’s memory allocations):

/ $ su
/ #
/ # free
 total used free shared buffers
 Mem: 256884 17760 239124 0 7876
 Swap: 0 0 0
Total: 256884 17760 239124

Determine the PID of buggy_memleak:

/ # ps | grep buggy_memleak
 582 root buggy_memleak

The /proc filesystem provides information about all presently running processes, and is the
source of information for user applications such as ‘ps’. Examine the files associated with
process 582:

Note: The PID number seen by the user will vary according to which shell commands have been run
prior to beginning this procedure.

Examine the address space for this process:

/ # cd /proc/582
/proc/582 # cat maps
00100000-00103000 r-xp 00100000 00:00 0 [vdso]
0fe85000-0ffd8000 r-xp 00000000 01:00 464 /lib/libc-2.5.90.so
0ffd8000-0ffe8000 ---p 00153000 01:00 464 /lib/libc-2.5.90.so
0ffe8000-0ffe9000 r--p 00153000 01:00 464 /lib/libc-2.5.90.so
0ffe9000-0ffed000 rwxp 00154000 01:00 464 /lib/libc-2.5.90.so
0ffed000-0fff0000 rwxp 0ffed000 00:00 0
10000000-10001000 r-xp 00000000 01:00 387 /root/buggy_memleak
10010000-10011000 rwxp 00000000 01:00 387 /root/buggy_memleak
48000000-4801e000 r-xp 00000000 01:00 459 /lib/ld-2.5.90.so
4801e000-48022000 rw-p 4801e000 00:00 0
4802d000-4802f000 rwxp 0001d000 01:00 459 /lib/ld-2.5.90.so
bfbd9000-bfbee000 rw-p bffeb000 00:00 0 [stack]

Examine the current memory usage of this process:

/proc/582 # cat status
Name: buggy_memleak
State: S (sleeping)
Tgid: 582
Pid: 582
PPid: 453
TracerPid: 0

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 20

R

Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups: 0 1 2 4
VmPeak: 1700 kB
VmSize: 1700 kB
VmLck: 0 kB
VmHWM: 436 kB
VmRSS: 436 kB
VmData: 40 kB
VmStk: 84 kB
VmExe: 68 kB
VmLib: 1412 kB
VmPTE: 20 kB
...

In the console window where ‘buggy_memleak’ is run, press <enter> so that the application will
perform it’s memory allocations. The application will prompt the user to press <enter> to write
to the allocated memory. Do not press <enter> at this time.

Press <enter> to perform memory allocations:

Press <enter> to write to allocated memory:

In the telnet window, view the free physical memory again:

/proc/582 # free
 total used free shared buffers
 Mem: 256884 18616 238268 0 7876
 Swap: 0 0 0
Total: 256884 18616 238268

Compared to the previous output of ‘free’ (before the application allocated memory with
malloc(), 18616 - 17760 = 856k of system memory has been consumed.

View the process address space again:

/proc/582 # cat maps
00100000-00103000 r-xp 00100000 00:00 0 [vdso]
0fe85000-0ffd8000 r-xp 00000000 01:00 464 /lib/libc-2.5.90.so
0ffd8000-0ffe8000 ---p 00153000 01:00 464 /lib/libc-2.5.90.so
0ffe8000-0ffe9000 r--p 00153000 01:00 464 /lib/libc-2.5.90.so
0ffe9000-0ffed000 rwxp 00154000 01:00 464 /lib/libc-2.5.90.so
0ffed000-0fff0000 rwxp 0ffed000 00:00 0
10000000-10001000 r-xp 00000000 01:00 387 /root/buggy_memleak
10010000-10011000 rwxp 00000000 01:00 387 /root/buggy_memleak
10011000-10316000 rwxp 10011000 00:00 0 [heap]
48000000-4801e000 r-xp 00000000 01:00 459 /lib/ld-2.5.90.so
4801e000-48024000 rw-p 4801e000 00:00 0
4802d000-4802f000 rwxp 0001d000 01:00 459 /lib/ld-2.5.90.so
4802f000-48231000 rw-p 4802f000 00:00 0
bfbd9000-bfbee000 rw-p bffeb000 00:00 0 [stack]

New valid addresses have been added to the process address space. The address ranges at
0x10011000 and 0x4802F000 are where memory returned by calls to malloc() have been
mapped. There are two ranges rather than one due to the way malloc() operates with glibc.
Memory allocations under 128k come from the segment noted as [heap]. These are allocated
through use of brk() or sbrk(). Larger allocations are obtained with a call to mmap() for a new
private segment.

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 21

R

View the amount of memory presently allocated by this process:

/proc/582 # cat status
Name: buggy_memleak
State: S (sleeping)
Tgid: 582
Pid: 582
PPid: 453
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups: 0 1 2 4
VmPeak: 6856 kB
VmSize: 6856 kB
VmLck: 0 kB
VmHWM: 1244 kB
VmRSS: 1244 kB
VmData: 5196 kB
VmStk: 84 kB
VmExe: 68 kB
VmLib: 1412 kB
VmPTE: 24 kB

Compared to the previous memory usage of the application, (5196 - 40) = 5156k. This is
significantly more memory usage than seen in the difference of system memory reported by
‘free’, 856k. This is because the memory allocated to this process has mostly just increased the
size of the process address space. Actual storage is not consumed until the process accesses
this memory. The amount of physical resources actually used is indicated by VmRSS.

In the console window, press <enter> so that buggy_memleak will write to one of the large
blocks of memory just allocated. The user will be prompted to press <enter> to exit the
application. Do not do so at this time.

Press <enter> to write to allocated memory:

Press <enter> to exit:

In the telnet window, view the used physical memory again:

/proc/582 # free
 total used free shared buffers
 Mem: 256884 19636 237248 0 7876
 Swap: 0 0 0
Total: 256884 19636 237248

Additional physical memory is now in use. View the amount of memory allocated to the
process:

/proc/582 # cat status
Name: buggy_memleak
State: S (sleeping)
Tgid: 582
Pid: 582
PPid: 453
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups: 0 1 2 4
VmPeak: 6856 kB
VmSize: 6856 kB
VmLck: 0 kB

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging user applications

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 22

R

VmHWM: 2264 kB
VmRSS: 2264 kB
VmData: 5196 kB
VmStk: 84 kB
VmExe: 68 kB
VmLib: 1412 kB
VmPTE: 24 kB

It is seen that the quantity of memory requested by the process (VmData) is unchanged, but the
actual memory consumed (VmRSS, the Resident Segment Size) has increased.

Press <enter> to exit the application. The memory trace file is now available for debugging.

Press <enter> to exit:

ls -l malloc-log.txt
-rw-r--r-- 1 root root 9300 Jan 1 04:28 malloc-log.txt

Transfer the log file to the host with TFTP. The user must have completed the steps in
“Configure the TFTP server” to complete this step.

tftp -pr malloc-log.txt 192.168.0.1

The log file contains a record of all calls to malloc() and free(). The output is not intended to be
human readable. The standard Linux utility ‘mtrace’ is used to analyze the log:

$ mtrace malloc-log.txt

All memory which was allocated and not freed is represented in this output. The size allocated
and address from where malloc() was called are listed.

EXCERPT:

Memory not freed:

 Address Size Caller
0x0000000010011390 0x1000 at 0x10000524
0x00000000100123a0 0x1000 at 0x10000524
0x00000000100133b0 0x1000 at 0x10000524
0x00000000100143c0 0x1000 at 0x10000524
0x00000000100153d0 0x1000 at 0x10000524
...

The output of mtrace is suitable for further processing. It would be useful to see all of the
allocations by a single caller to be added together and represented as a single entity. The script
mtrace_analyze.pl provided with this application note is used.

$ cd <project area>
$ cp <tftp directory>/malloc-log.txt <project area>
$ mtrace malloc-log.txt | buggy_memleak/mtrace_analyze.pl -
buggy_memleak-unstripped
Total: 1048576 Caller: 0x1000056c memwaster1() buggy_memleak.c:28
Total: 1048576 Caller: 0x10000558 memwaster1() buggy_memleak.c:26
Total: 2621440 Caller: 0x100004f0 memwaster3() buggy_memleak.c:16
Total: 409600 Caller: 0x10000524 memwaster2() buggy_memleak.c:21

The totals and locations are seen to match the source code in buggy_memleak.c.

How to Solve the Problem

The best that any debug tool can do is provide data - a clue where the investigation should
proceed. That is the case observed with buggy_memleak. The memory usage statistics identify
which places within the application allocate the most memory in a persistent manner (memory
which has not been freed). Higher memory usage does not guarantee a memory leak -- there

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Driver Application Interaction

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 23

R

may really be a large amount of data to store. Therefore, knowledge of what type of data is
stored and how much of it there is will be necessary to debug a possible memory leak.

Debugging
Driver
Application
Interaction

‘Buggy’ Driver Operation

A driver has been supplied with this application note to demonstrate debugging kernel drivers
and interaction of user applications with a driver. The user integrated this driver into their kernel
build with the steps in “Build a kernel image”.

The buggy_drv contains several static strings. The application selects a string by writing the
desired string index to the device. When the application reads from the device, the presently
selected string is read.

The defined strings are shown below:

const char *buggy_strings[] = {
 "0:Hello world",
 "1:That's life",
 "2:Goodbye, cruel world",
 "3:The Swift Brown Fox Jumps Over The Lazy Dog",
 "Invalid Selection"
};

If the application writes the binary integer value ‘1’ to /dev/buggy string index 1 will be
selected. The following read from the device will read the string at index 1 on the buggy_strings
array. The string “1:That’s life” is read.

Application ‘buggy_allstrings’

The buggy_allstrings application selects and displays the first three string indices. However,
when the application is run, this in not the behavior observed:

buggy_allstrings
Display the first three strings provided by /dev/buggy.
Selected string 0
String 1677721600 is 14 bytes :0:Hello world:
#

Only the first string has printed. The driver only contains a few strings, so clearly index
1677721600 is invalid. When the application source is examined, it is seen that indx is only
incremented once per loop:

int main()
{
 int devfd;
 ssize_t bytes;
 char buffer[10];
 int indx;

 printf("Display the first three strings provided by /dev/buggy.\n");

 devfd = open(BUGGY_DEV, O_RDWR);
 if (devfd < 0) {
 printf("Unable to open device file %s.\n", BUGGY_DEV);
 exit(1);
 }

 /* Print the first 3 strings */
 for (indx = 0; indx < 3; indx++) {
 /* Select a string */
 write(devfd, &indx, sizeof(int));
 printf("Selected string %d\n", indx);

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Driver Application Interaction

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 24

R

 /* Display selected string */
 bytes = read(devfd, buffer, sizeof(buffer));
 printf("String %d is %d bytes :%s:\n", indx, bytes, buffer);
 }
}

No error manipulating indx is apparent.

Driver /proc filesystem entry

The driver creates an entry for itself in the /proc filesystem. This filesystem in entirely virtual
- when files in this filesystem are read, the data read are composed on the fly by software. This
is a useful debugging tool for providing information on whatever internal driver data the
programmer whishes to make available to user space.

The drivers /proc entry is read. The below output is produced by the buggy_proc_seq_show()
procedure.

cat /proc/driver/buggy_drvr

Reads: 1
Bytes Read: 14
Writes: 1
Opens: 1
Closes: 1

String Index: 0

It is seen that there has been only a single read request on the device, and only a single write
request. These correspond to selecting string index 0 and displaying this string. 14 bytes have
been read.

Examining the source for buggy_allstrings it is seen that a read from the device will fill a 10 byte
buffer. Yet the return from read() and the driver statistics in /proc/driver/buggy_drvr
indicated that 14 bytes have been read. The read() function (and the read system call) stipulate
a buffer size. The available byte count has been correctly specified in the application.

int main()
{
 int devfd;
 ssize_t bytes;
 char buffer[10];
 int indx;

 printf("Display the first three strings provided by /dev/buggy.\n");

 devfd = open(BUGGY_DEV, O_RDWR);
 if (devfd < 0) {
 printf("Unable to open device file %s.\n", BUGGY_DEV);
 exit(1);
 }

 /* Print the first 3 strings */
 for (indx = 0; indx < 3; indx++) {
 /* Select a string */
 write(devfd, &indx, sizeof(int));
 printf("Selected string %d\n", indx);

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Driver Application Interaction

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 25

R

 /* Display selected string */
 bytes = read(devfd, buffer, sizeof(buffer));
 printf("String %d is %d bytes :%s:\n", indx, bytes, buffer);
 }
}

A read of the device is handled by the driver function buggy_read(). When the number of bytes
to be copied copybytes is calculated, the driver does not honor the maximum value count
provided by the application. This results in the driver writing past the end of the buffer in the
user application.

/*
 * buggy_read:
 * A userspace read of the device file.
 */
ssize_t buggy_read(struct file *filp, char __user *buf, size_t count,
 loff_t *f_pos)
{
...
 /*
 * How many bytes to copy
 */
 copybytes = strlen(buggy_strings[dev->string_index]) + 1;

 /*
 * Copy this buffer to user space.
 */
 err = copy_to_user(buf, buggy_strings[dev->string_index], copybytes);

The next item in memory after the buffer is the variable indx. When the driver writes past the
end of the buffer the value of indx is corrupted. The value of indx, shown in the program output,
is actually the characters of the string displayed.

./buggy_allstrings
Display the first three strings provided by /dev/buggy.
Selected string 0
String 1677721600 is 14 bytes :0:Hello world:

Refer to Table 2.

How to solve the problem

The driver must not exceed the maximum available buffer space available. The buggy_read()
procedure is modified:

copybytes = min(strlen(buggy_strings[dev->string_index]) + 1, count);

Application ‘buggy_choosestring’

The buggy_choosestring application will select and display the string present at the index
specified by the user on the command line:

buggy_choosestring 0
Selected string 0
String 0 is 14 bytes :0:Hello world:

Table 2: String Buffer

String 0 : H e l l o w o r l d NUL

ASCII 30 3A 48 65 6C 6C 6F 20 77 6F 72 6C 64 00 00 00

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Decimal 1677721600

www.BDTIC.com/XILINX

http://www.xilinx.com

Debugging Driver Application Interaction

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 26

R

Display string 1000:

buggy_choosestring 1000
Unable to handle kernel paging request for data at address 0x00000000
Faulting instruction address: 0xc0011354
stopped custom tracer.
Oops: Kernel access of bad area, sig: 11 [#1]
PREEMPT Xilinx Virtex
Modules linked in:
NIP: c0011354 LR: c0164c48 CTR: c0164be0
REGS: cf877e10 TRAP: 0300 Not tainted (2.6.24_pro5024-ml507)
MSR: 00029000 <EE,ME> CR: 24000482 XER: 20000000
DEAR: 00000000, ESR: 00000000
TASK = cf019410[510] 'buggy_choosestr' THREAD: cf876000
GPR00: 00000000 cf877ec0 cf019410 00000000 ffffffff 00000064 cf877f20
00000000
GPR08: 00000004 c02d7068 00000004 c02d8008 00000000 10018ae8 10087954
1007d988
GPR16: 1007d998 1007d944 00000000 1008579c 100910d3 100a825c bf895768
c02f0000
GPR24: cf0284e4 00000064 cf877f20 bfaf4b20 00000000 ce407aa0 cf0284e0
00000064
NIP [c0011354] strlen+0x4/0x18
LR [c0164c48] buggy_read+0x68/0x1f4
Call Trace:
[cf877ec0] [bfaf4978] 0xbfaf4978 (unreliable)
[cf877ef0] [c007dacc] vfs_read+0xb4/0x16c
[cf877f10] [c007e038] sys_read+0x64/0xd8
[cf877f40] [c000d1d0] ret_from_syscall+0x0/0x3c
Instruction dump:
4082fff4 4e800020 38a3ffff 3884ffff 8c650001 2c830000 8c040001 7c601851
4d860020 4182ffec 4e800020 3883ffff <8c040001> 2c000000 4082fff8 7c632050
---[end trace 8712654a561d6dc2]---

A kernel Oops indicates a serious software error in the kernel. Kernel code has attempted to
access a virtual address (0x00000000) for which there was no virtual->physical mapping. The
address was accessed from strlen(), which was called by the buggy_read() routine.

It is seen that buggy_read() calls strlen() in several places, the first of which is where it
determines how many bytes to copy:

copybytes = strlen(buggy_strings[dev->string_index]) + 1;

If the string_index is greater than the total number of strings defined in buggy_strings[] then this
access would dereference a pointer beyond the buggy_strings[] pointer. Examining the
buggy_write() procedure it is seen that the driver accepts any input from user space, regardless
of whether or not it is valid:

dev->string_index = *(int*)buffer;

How to Solve the Problem

The buggy_write() procedure must not allow the driver to select an invalid string index.

 dev->string_index = *(int*)buffer;
 if (dev->string_index >= NUM_BUGGY_STRINGS) {
 dev->string_index = NUM_BUGGY_STRINGS;
 }

www.BDTIC.com/XILINX

http://www.xilinx.com

References

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 27

R

References 1. UG111 Embedded System Tools Reference Manual

2. XAPP1117 Software Debugging Techniques for PowerPC 440 Processor Embedded
Systems.

3. Stallman, Richard, Roland Pesch, Stan Schebs. Debugging with GDB. Boston: The Free
Software Foundation, 2007

4. Ousterhout, John. Tcl and the TK Toolkit. Reading: Addison-Weslet Publishing Complany,
1994.

5. Christopher Hallinan. Embedded Linux Primer. Prentice Hall, 2007.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

6/9/09 1.0 Initial Xilinx release.

www.BDTIC.com/XILINX

http://www.informit.com/store/product.aspx?isbn=0131679848
http://www.xilinx.com

Notice of Disclaimer

XAPP1137 (v1.0) June 9, 2009 www.xilinx.com 28

R

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This
Application Note is one possible implementation of this feature, application, or standard, and is
subject to change without further notice from Xilinx. You are responsible for obtaining any rights
you may require in connection with your use or implementation of this Application Note. XILINX
MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED
WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF DATA,
LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

www.BDTIC.com/XILINX

http://www.xilinx.com

	Linux Operating System Software Debugging Techniques with Xilinx Embedded Development Platforms
	Abstract
	Included Systems
	Introduction
	General Topics
	Included Software
	buggy_core
	buggy_memleak
	buggy_drv
	buggy_allstrings
	buggy_choosestring

	Intended Audience
	Hardware and Software Requirements
	Reference System Specifics
	Address Map

	Executing the Reference System
	Executing the Reference System using the Pre-Built Bitstream and the Compiled Software Application
	Executing the Reference System from XPS for Hardware

	XMD and TCL Scripting
	Patch the kernel
	Build a kernel image
	Build zImage.initrd

	Debugging Kernel Boot Issues
	Booting a zImage
	Download and run the zImage

	Using GDB to debug kernel boot problems
	GDB Macros
	View the syslog with XMD
	Correcting the problem

	Using strace
	Identifying the Problem
	STRACE
	How to Solve the Problem
	Modifying the Root File System

	Debugging user applications
	Using gdbserver
	Stripped binaries
	Launch the application with gdbserver:
	Connect to the gdbserver

	Debugging Problems in the Field
	Configure the TFTP server
	Linux
	Microsoft Windows
	Transfer the core file

	Analyze the core file
	Debugging Memory Leaks
	Application ‘buggy_memleak’
	How to Solve the Problem

	Debugging Driver Application Interaction
	‘Buggy’ Driver Operation
	Application ‘buggy_allstrings’
	Driver /proc filesystem entry
	How to solve the problem
	Application ‘buggy_choosestring’
	How to Solve the Problem

	References
	Revision History
	Notice of Disclaimer

