
XAPP432 (v1.1) April 3, 2007 www.xilinx.com 1

© 2004, 2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any
warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary LIN, or Local Interconnect Network, is a simple single-wire serial communications protocol
designed primarily for use in automotive applications. Compared to CAN, LIN is a simpler and
slower protocol, but its simplicity makes it ideal for decentralized sensor or display nodes,
where CANbus introduces more complexity than is often necessary for low-speed monitoring
or display purposes. This application note describes an implementation of a LIN controller on a
Xilinx CoolRunner-IITM CPLD. A microcontroller interface is provided, but this could also be
implemented as an IP core with minimal effort. See the PicoBlaze application note for details.

Introduction LIN Controller Functionality
The LIN controller discussed in this document functions in a manner very similar to a UART.
The controller handles all of the serialization, bit-level timing, frame packing, checksum
generation and validation, parity generation and validation, and ensures and validates the
consistency of the LIN frames. The physical interface is handled by an external LIN transceiver,
as shown in Figure 1, available through a number of manufacturers.

Figure 1: CPU Interface and LIN Transceiver Interface.

The CPU application interfaces with the controller through a set of addressable registers and
an 8-bit wide data bus, as shown in Figure 1. The controller can interrupt the microcontroller on
any LIN error condition or on reception or successful transmission of a single character. The
interrupt is level-sensitive--the interrupt line will remain high until the error condition is
acknowledged and cleared by the microcontroller.

Appropriate Uses for LIN
LIN is appropriate in any application that needs to be cost-effective, requires relatively low
bitrates, and does not require robust fault management or reliability; in general, LIN is a good
choice for events and applications that happen in "human time." In this capacity, it is an ideal
protocol to handle communication between simple, noncritical components in an automobile.

Application Note: CPLD

XAPP432 (v1.1) April 3, 2007

Implementing a LIN Controller on a
CoolRunner-II CPLD

R

LIN Bus
Transceiver

RxDTxD

CPU LIN Controller

8

DATA

4

ADDR

IRQ

R

SEL

W

_

__

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://direct.xilinx.com/bvdocs/appnotes/xapp387.pdf

2 www.xilinx.com XAPP432 (v1.1) April 3, 2007

IntroductionR

For instance, a LIN node may control the dashboard display in an automobile. A typical
automobile display only needs to be updated a few times a second, and requires only minimal
redundancy and fault tolerance. Another LIN node may take input from a keypad. Others may
be used to for in-car environmental monitoring, automatic door locks, or low-speed actuators
such as intermittent wiper blades (Figure 2). LIN may also find uses in the growing popularity of
luxury features, such as in-car navigation systems, in-car DVD players or entertainment
systems, and individual per-seat environmental or entertainment controls.

LIN is not intended for use in safety applications such as airbag controllers, ABS, anti-skid
systems, critical engine management components, or any other system that could affect the
safety of a vehicle. If safety and robust fault tolerance is an issue, another protocol such as
CAN should be considered instead.

Figure 2: Master and Slave Nodes in a Typical Application.

CoolRunner-II Advantages for LIN
The Xilinx CoolRunner-II is a low-cost, low-power, programmable logic device that is ideal for
this type of application. Used as a standalone controller, the CoolRunner-II fits well into the
existing automotive design culture. A typical sensor or display node, for instance, may be
comprised of a number of different technologies designed by groups that may only have
minimal interaction or communication with each other. A typical airbag controller in an
automobile today, for instance, may have one or two ASICs, a CANbus controller, a
microcontroller, and various sensors all developed by different outsourced groups. In this type
of development environment, flexibility and predictable, well-documented interaction between
the various components is a must. A LIN controller implemented on a CPLD meets all of these
criteria.

Changes in the LIN protocol could be implemented quickly with no impact on the overall design,
footprint, protocol, or even in the software interacting with the LIN controller. LIN is an emerging
standard, and as such may change in ways that would require the redesign of an ASIC used in
the same role. If LIN is to gain widespread acceptance as a complementary protocol to
CANbus, implementors must be assured that changes to the LIN protocol can be absorbed
quickly with minimal impact to their prototypes.

Xilinx CPLDs are extremely flexible, finding applications in such diverse areas as LCD drivers,
decoders and encoders, bus interfaces such as SPI or I2C, conventional UARTs, and general
I/O expansion. The LIN controller designed in this document uses approximately 80% of a 256
macrocell CoolRunner-II device, when optimized for space. The Xilinx CoolRunner-II family
includes devices up to 512 macrocells, more than enough to implement a fully functional LIN
node entirely within a single device. For example, the CPU interface could be removed, some
minimal control and timing logic added, and an LCD or VFD driver could be added to create a
LIN display node, all at a lower cost and in a footprint no larger than most microcontrollers.

Slave Node

To Engine Management
Components

Master Node

Onboard Computer

LINBus

CANbus

Actuator

Sensor

Display

Slave Node Slave Node

www.BDTIC.com/XILINX

http://www.xilinx.com

LIN Protocol

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 3

R

The Xilinx CoolRunner-II family features extremely low power consumption--the lowest power
CPLDs in the industry. For example, a Xilinx XC2C256 operating at 20MHz in a configuration
utilizing approximately 80% of available resources, with 12.5% of the available flip-flops
toggling per clock, consumes less than 10 mA of current, far less than that of similar CPLDs
from other manufacturers.

LIN Protocol LIN Consortium
The authoritative source of information on the LIN protocol is the LIN consortium. Their
website, http://www.lin-subbus.org, has the latest LIN specification, as well as a forum,
development and testing tools, and information

LIN vs. CAN
LIN is designed to be a complementary protocol to CAN. As the CAN protocol grows and
develops, so does its complexity. The LIN specification can be implemented with a low part
count and relatively low cost, and is ideal for low-speed multiplex displays, sensors or other
inputs, and actuators. CAN, on the other hand, is robust, fault-tolerant, and extremely high-
speed; thus, it is ideal for critical communications, such as engine management, airbags, or
skid protection systems. However, it requires a relatively higher cost and higher part count.
Table 1 provides a comparison between LIN and CAN.

Table 1: LIN Compared to CAN

Feature LIN CAN

Error Handling Typical errors are specified
and detectable using
checksum, parity, and bus
transmission monitoring, but
retransmission, back off, or
baud adjustments are not
specified and are left to the
upper-layer application.

Robust fault confinement and
signalling, including global
and local error detection,
burst error detection, CRC
error checking, fault
confinement procedures,
and retransmission.

Acknowledgement No, left to upper-layer
application.

Yes

Electrical Interface 2-valued bus (dominant and
recessive). A 2-wire bus is
specified in great detail,
specifying slope, slew rates,
allowable voltage and current
ranges, and complex
impedance.

The CAN electrical interface
is not specified, only
suggested. Suggestions are
single-wire, differential,
optical, etc.

Power Management Sleep and wake-up are
specified

Sleep and wake-up are
specified

Bit Rates Up to 19200 bps. Up to 128 kbps or 1 Mbps,
depending on the
implementation and
underlying physical bus.

Master/Slave Single master, no arbitration. Multimaster, arbitration.

Multicast Yes Yes

Synchronization Yes Yes

www.BDTIC.com/XILINX

http://www.linsubbus.org
http://www.linsubbus.org
http://www.xilinx.com

4 www.xilinx.com XAPP432 (v1.1) April 3, 2007

LIN ProtocolR

LIN Network and Frame Format
A LIN network is composed of a single master control unit (master node) and a number of slave
control units (slave nodes). The master node contains both a master task and a slave task.
Each slave node contains a single slave task, as shown in Figure 3.

Figure 3: LIN Network

The master task is responsible for sending out a synch break, a one-byte synchronization field,
and a one-byte identifier field. A single slave in the network will then respond to that identifier
with 2, 4, or 8 data bytes, followed by a single-byte checksum. It is important to note that an
identifier addresses a function, not a specific slave node. A LIN network is inherently multicast;
consequently, every slave node on a network may receive and act on a message; however, only
a single slave may respond to a given identifier. It is the responsibility of the LIN application to
ensure that only a single slave responds on a given identifier. A maximum of 64 unique
identifiers exist; out of these, 4 are reserved for future use. The number of total nodes in a
network is limited by the maximum allowable network impedance, and should not exceed 16. A
sample LIN transaction showing the division between the master and slave tasks is shown in
Figure 4.

Figure 4: LIN Transaction

Prioritization None Yes

Frame Length Fixed, depending on
identifier: 2,4 or 8 bytes
recommended. Optionally
more to meet specific needs.

Variable from 0 to 8 bytes.

Table 1: LIN Compared to CAN

Feature LIN CAN

S lave T ask

. . .

Mas ter Node

Master T ask

S lave T ask

L INB us

. . .
S lave Node

S lave T ask

S lave Node

S lave T ask

. . .R ecess ive

Dominant

2 to 8 Data B ytes
F ield
S yncS ync B reak ID C ksum

Master T ask

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 5

R

A LIN frame consists of a one-byte identifier, 2, 4, or 8 data bytes, and a one-byte checksum.
A LIN byte starts with a single dominant start bit, 8 data bytes, LSb first, and a single recessive
stop bit, as shown in Figure 5.

Figure 5: LIN Byte Format

The identifier contains 2 parity bits and a 6-bit identifier. Two bits of the 6-bit identifier optionally
denote the expected length of the frame, as shown in Table 2.

Implementation Figure 6 gives a block diagram of the overall design of the LIN controller. Each functional block
has a corresponding synthesizable VHD file in the ZIP file accompanying this document.

Figure 6: Block Diagram for the LIN Controller and CPU Interface.

Table 2: Frame Length as a Function of the Identifier's Length Code

Bit 5 Bit 4 Length (in bytes)

0 0 2

0 1 2

1 0 4

1 1 8

Dominant

Start Stop
Bit

0 1 32 4 5 6 7
MSbLSb

Recessive

Bit

16xB IT C LK

C ontrol

S tatus1

S tatus2

T ransmit

R eceive

R esponse Mask

R eceive Mask

C lkDiv1

C lkDiv2

C onfiguration R egis ters

C loc k Divider

C hec ks um G enerator

P arity G enerator

Master P rocess

S lave P rocess

C ore S tate Mac hine

Majority S ampler

R eceive S hift R egister

R ec eiver

T rans mitter

T ransmit S hift R egister

_
R

S E L

__
W

8

4

DAT A

ADDR

C LK

R xD

16xB IT C LK

B IT C LK

S E R _IN

16xB IT C LK

R E C E IV E

XMIT

T xD

IR Q

/Div1&Div2 /16

www.BDTIC.com/XILINX

http://www.xilinx.com

6 www.xilinx.com XAPP432 (v1.1) April 3, 2007

ImplementationR

Configuration Registers/CPU Interface
The configuration register block handles the bulk of the CPU interface, and mediates the
setting and clearing of various status and configuration registers. The CPU-side interface acts
as a set of addressable 8-bit registers, some of which can be cleared and set by the CPU, and
others that can only be set or cleared by the controller itself. The register sets and their
functions are listed in Table 3.

Table 3: Register Sets and Their Functions.

Tag Addr. Bit(s) Name R/W Dflt. Description

CONTROL1 0000 7 I_RECEIVE R/W 1 0 - RDR full int. disabled
1 - RDR full int. enabled

6 I_TRANSMIT R/W 0 0 - TDR empty int. disabled
1 - TDR empty int. enabled

5 I_ERROR R/W 1 0 - Error interrupt disabled
1 - Error interrupt enabled

4-2 Unused - - -

1 CFG_AUTOBAUD R/W 0 Unimplemented

0 CFG_MASTERSLAVE R/W 0 0 - Controller is a master
node.
1 - Controller is a slave node.

STATUS1 0010 7-4 Unused - - -

3 S_ERROR R 0 0 - No error flags set
1 - An error flag is set
Cleared when STATUS2 is
read

2 S_IDLE R 0 0 - Controller is active.
1 - Controller is idle.

1 S_TDRE R 1 0 - TDR is full
1 - TDR is empty

0 S_RDRE R 1 0 - RDR is full
1 - RDR is empty

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 7

R

Core State Machine
The core state machine handles all bit timing operations, sets or resets various status registers,
and interrupts the CPU when appropriate. The core state machine is primarily composed of two
state machines, the master and the slave. It also contains a counter for all bit timing operations,
a break detection process to detect whether a break has been initiated, and a byte counter,
which counts the expected number of bytes in a frame based on the identifier, as shown in
Table 2.

Master Task

The master process is only active if the CFG_MASTERSLAVE flag is set. There should only be
one master active in any single LIN network. The master task handles all bus arbitration--this is
arbitration only in a very limited sense--the master task must initiate any slave response and
must arbitrate and initiate any slave-slave communication.

STATUS2 0011 7 Unused - - -

6 E_SHORTFRAME R 0 1 - A short frame was
received. Cleared when
STATUS2 is read

5 E_NOSLAVERESP R 0 1 - No slave response within
the time-out. Cleared when
STATUS2 is read

4 E_XMIT R 0 1 - Bit error during
transmission. Cleared when
STATUS2 is read

3 E_FRAMING R 0 1 - A framing error was
encountered. Cleared when
STATUS2 is read

2 E_PARITY R 0 1 - A parity error was
detected in an ID. Cleared
when STATUS2 is read

1 E_CKSUM R 0 1 - Checksum error in a
received frame. Cleared
when STATUS2 is read

0 E_OVERRUN R 0 1 - RDR overrun - byte lost.
Cleared when STATUS2 is
read

TRANSMIT 0100 7-0 TDR W 00 Transmit Data Register

RECEIVE 0101 7-0 RDR R 00 Receive Data Register

ID_MASK 0110 7-0 ID_MASK W/R 00 Slave ID Mask

ID_FILTER 0111 7-0 ID_FILTER W/R 00 Slave ID Filter

CLKDIV1 1000 3-0 CLKDIV1 W/R 00 Clock Divisor, MSB

CLKDIV2 1001 7-0 CLKDIV2 W/R 02 Clock Divisor, LSB

Table 3: Register Sets and Their Functions.

Tag Addr. Bit(s) Name R/W Dflt. Description

www.BDTIC.com/XILINX

http://www.xilinx.com

8 www.xilinx.com XAPP432 (v1.1) April 3, 2007

ImplementationR

Functionally, the master task sends out a synch break, a synch field, and a one byte slave
identifier. The master task then goes idle and the slave task takes over and waits for or sends
out any slave response.

The master task's behavior is shown in the flowchart in Figure 7.

Figure 7: Master Task Flowchart.

Slave Task

The slave task is responsible for sending the data portion of a frame. If the slave is being
addressed by the master (indicated by a match in its receipt mask), it will respond or take action
on the contents of the message. There is NO procedure for slave arbitration, so it is the
responsibility of the upper-layer application to ensure that only one slave responds on a given
identifier, even if many slaves take other action on a given identifier.

The slave, functionally, waits for a synch break, synchronizes its internal clock based on the
timing in the synch field sent out by the master, receives an identifier, and then, depending on

Field
Latch Sync

Transmitter
 Done?

Yes

Yes

Parity Bits
Latch ID and

Yes

Transmitter
 Done?

No

Reset

Data Reg.
 Full?

Transmit

Slave
Idle?

Send Break
Low Phase

Send Break
High Phase

No

No

Yes

No

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 9

R

the mask and the upper-layer application, ignores the ID, responds to the message, or receives
a message from another slave. A flowchart of the slave task's behavior is given in Figure 8.

Figure 8: Slave Task Flowchart.

The LIN controller has a configurable ID mask and filter. The mask is first bitwise ANDed with
the received ID, then compared to the filter. If the masked ID and filter do not match, the frame
will be completely ignored (including any framing, checksum, or other errors) until the next
synchronization break.

Filtering provides a way to reduce computational load on slave nodes. A slave may be
configured to acknowledge only a small range of identifiers. The master node should not, in
general, utilize any mask or filter, because if the mask indicates a frame should be ignored, the
master could incorrectly assume the bus is idle and send a synchronization break while another
node is in the process of transmitting. Further, if a frame is ignored, any errors associated with
that frame will not be flagged. In general, the master node should receive all frames, and the
upper layer application should assume responsibility for any additional filtering.

 Done?

Parity and
Mask OK?

of Bytes
Expected
Compute

(TDR is full)
Sending?

(TDR full)
Xmit Pending?

Transmitter
 Done?

Byte Counter
 Decrement

Byte Counter
 = ’0’?

Start and Sync
 Receiver

 Receiver
 Done?

Start bit?
(ser_in = ’0’)

Byte Counter
 Decrement

Byte Counter
 = ’0’?

 Latch Byte &
Start Transmitter

Start bit?
(ser_in = ’0’)

Start and Sync
 Receiver

Latch Cksum &
Start Transmitter

Transmitter
 Done?

 Receiver
 Done?

(ser_in = ’0’)

Reset

started?
 Break

Set/Reset
Error Flags

Sync field?
(data = 0x55)

Start bit?
(ser_in = ’0’)

Start and Sync
 Receiver

 phase?
 High

Start and Sync
 Receiver

 Receiver
 Done?

Start bit?
(ser_in = ’0’)

No

No

Yes

Yes

Yes

 Receiver

Yes

Receiving?

No

No

Yes

Yes

No

Yes

No

Yes

No

No

Yes

Yes

Yes

No

Yes

No

No

No

No

Yes

Yes

Yes

No

Yes

Yes

No

No No

Yes

No

Yes

No

Yes

www.BDTIC.com/XILINX

http://www.xilinx.com

10 www.xilinx.com XAPP432 (v1.1) April 3, 2007

ImplementationR

Clock Divider
The clock divider divides the system clock down to the internal clock "bitclk_x16" with a
configurable 16-bit divisor. The MSB of this divisor is in register CLKDIV1, and the LSB is in
CLKDIV2. This internal clock is then further divided by 16, generating an internal "bitclk," used
for most bit timing operations. To compute the clock divisor given the system clock rate and the
desired bit rate, use the following formula (& denotes concatenation):

divisor = CLKDIV1 & CLKDIV2

For example, given a system clock frequency of 1.8432Mhz and a desired bit rate of 9600bps,
the divisor is:

Divisors of 1 or 0 are invalid; the behavior is undefined if the divisor is 1 or 0.

The LIN specification requires that slave nodes have the ability to adjust their local clocks using
the synchronization field sent out by the master. The ability to adjust the slave clock is not
currently part of this implementation--each node must have a local resonator with an error no
more than 1.5% relative to the master resonator, and must have divisors that match
appropriately.

Table 4 lists divisors and errors for some common clock rates.

Majority Sampler
The majority sampler samples the incoming bit stream at 16x the current bit rate. It outputs the
majority of the last 16 samples --that is, if at least 8 of the last 16 samples are '1', the output is
'1', otherwise it is '0'. This results in a delay between actual input (RxD) and the input seen by
the internal state machines (ser_in) of 0.5 * BIT_TIME.

Checksum Generator
The checksum generator maintains a resettable accumulator, an 8-bit input, a "strobe" to latch
and add a new value, and an 8-bit output containing the checkbyte (bitwise complement of the
checksum). The checksum is computed as a running sum of all data bytes received, with any
carry added back to the LSb of the sum. The checkbyte, transmitted over the bus, is the bitwise
complement of the checksum.

The checksum generator does not add the carry until the next strobe; thus, to compute the
correct checksum, a final "00" must be latched.

divisor CLK
16 desiredbitrate()×
---=

divisor 1210
1843200

16 9600()×
-----------------------------= =

divisor 1210 000C16= =

CLKDIV1 0016=

CLKDIV2 0C16=

Table 4: Clock Divisors for Common Bitrates

1.8432 MHz clock 3.072 MHz clock 40.000 MHz clock

Bitrate Divisor Error Bitrate Divisor Error Bitrate Divisor Error

2400 48 0.000% 2400 80 0.000% 2400 1042 -0.032%

9600 12 0.000% 9600 20 0.000% 9600 260 0.160%

19200 6 0.000% 19200 10 0.000% 19200 130 0.160%

www.BDTIC.com/XILINX

http://www.xilinx.com

CPU Interfacing

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 11

R

Parity Generator
The parity generator is a simple combinational circuit that takes a 6-bit input and outputs two
parity bits PR0 and PR1. The parity generation and verification is part of LIN's error handling--
it is used for simple integrity checking on the identifier field sent out by the master. The slave
will raise a flag when an inconsistent parity is detected, but otherwise makes no distinction
between an inconsistent parity and an unknown identifier that does not match its response or
reception masks.

The parity bits are computed as follows (ID(0) is the LSb of the identifier field):

Receiver
The receiver is implemented as a simple shift register with a parallel output and an
asynchronous reset. The receiver internally divides the bitclk_x16 signal down to its own bitclk,
enabling synchronization with the center of the bit being received. The receiver is
asynchronously reset by the core state machine with a synchronized reset signal, which
resynchronizes the internal bitclk generator and starts reception of a new byte. The receiver
outputs an error if a framing error was encountered (incorrect stop bit) and outputs a "done"
signal when byte reception is finished.

Transmitter
The transmitter module is implemented as a simple shift register with a parallel input and a
strobe to load a new input. It signals "done" when the shift register has shifted out all bits and
outputs an error if the last bit transmitted differs from the bit received (indicative of some sort of
bus failure or transient error).

LIN Transceiver
The LIN transceiver simulates the behavior of a LIN transceiver and models the LIN bus. The
bus is modeled as a weak-high, pulled low. The transceiver has one output (RxD), one input
(TxD), and the LIN bus itself, which is bidirectional. This module is used for simulating a
multiple-node LIN network.

CPLD Utilization
The LIN controller described in this document was targeted for the XC2C256 CoolRunner-II
devices and uses approximately 80% of its resources when optimized for space. The utilization
summary is given in Table 5.

CPU Interfacing A standard CPU interface is provided for the controller. The CPU interface has a 4-bit wide
address bus, a 8-bit wide bidirectional data bus, ground-true select, and separate ground-true
read and write lines.

Register Access Timing
The registers are designed to be used asynchronously; that is, the CPU and the LIN controller
can be in different clock domains, if proper setup and hold times are observed. The interface is

PR0 ID 0() ID 1() ID 2() ID 4()⊕ ⊕ ⊕=

PR1 ID 1() ID 3() ID 4() ID 5()⊕ ⊕ ⊕=

Table 5: XC2C256 Utilization

Macrocells Used Product Terms Used Registers Used Pins Used Function Block Inputs
Used

199/256 (78%) 696 /896 (78%) 168/256 (66%) 20 /118 (17%) 505/640 (79%)

www.BDTIC.com/XILINX

http://www.xilinx.com

12 www.xilinx.com XAPP432 (v1.1) April 3, 2007

CPU InterfacingR

similar to a conventional UART. Figure 9 and Figure 10 show timing diagrams for register
operations.

Figure 9: Write Timing Diagram

Figure 10: Read Timing Diagram

Timing values:

Controller Setup
Any application making use of the controller should first set up all configuration registers. A
sample initialization sequence is provided in pseudo c-code:

const ADDR_CONTROL1 = 0;
const ADDR_STATUS1 = 2;
const ADDR_STATUS2 = 3;

__
SELControlled Timing

t1t1

t2

t2

t2

t3

Valid Address Valid AddressAddress

SEL

__
W

Valid ValidData

t1 t1

t1
t1

t3

t2

t2

t2

WControlled Timing

t1

SELControlled Timing

t1t1

Valid Address Valid AddressAddress

SEL

Data

t1 t1

t1
t1

_
R

ValidValid

RControlled Timing

t4 t4 t4
t4

_

t1

T0
1

Controller's Clock Frequency---=

T1 0≥

T2 2.5 T0×≥

T3 1.5 T0×≥

T4 T0≤

www.BDTIC.com/XILINX

http://www.xilinx.com

Testing Methodology

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 13

R

const ADDR_TRANSMIT = 4;
const ADDR_RECEIVE = 5;
const ADDR_ID_MASK = 6;
const ADDR_ID_FILTER = 7;
const ADDR_CLKDIV1 = 8;
const ADDR_CLKDIV2 = 9;
write_byte (ADDR_CONTROL1, 0xA1); /* 10100001 - enable receive interrupts,

error interrupts, and configure as a
slave node */

/* Set up the mask and filter to only acknowledge addresses in the range
XX101000 to XX101011 (0x28 to 0x2B). Note that the top two bits are
parity bits and are ignored for ID filtering. */

write_byte (ADDR_ID_MASK, 0xFC); /* ID mask - 11111100 (top two bits are
ignored) */

write_byte (ADDR_ID_FILTER, 0x28); /* ID filter - 00101000 (top two bits
are ignored) */

/* Set the clock divisor to 12 decimal (9600 bps with a system clock
of 1.8432 MHz */

write_byte (ADDR_CLKDIV1, 0x00);
write_byte (ADDR_CLKDIV2, 0x0C);
/* Clear out the RDR and clear any error flags that might have been set */
read_byte (ADDR_RECEIVE);
read_byte (ADDR_STATUS2);
/* enable the interrupt subsystem or schedule a realtime task to

monitor the RDR. */
enable_interrupts();

Frame Scheduling and Interrupt Handling
LIN frames are typically sent at periodic intervals. A LIN application may request information on
sensors and update a display with that information. This may be accomplished with round-robin
scheduling under a realtime OS, with interrupt-driven I/O, or a combination of the two. A full
discussion of the possibilities will not be discussed here; for more information, including timing
requirements, a recommended LIN API, and a configuration language that covers bit packing,
scheduling, and event-driven I/O, refer to the LIN specification.

Testing
Methodology

The bulk of the functional testing was performed in a simulator. However, a prototype has also
been built and validated as described in Physical Testing, found below.

Simulation
Test cases were written as VHDL test benches. The basic testing architecture consisted of a
two-node LIN network, one node acting as a master and one acting as a slave. The transceiver
module discussed in Section 3.9 served as a digital model for a real transceiver and emulated
the two-valued dominant-recessive LIN bus. The general form of a test involved writing to a
register, waiting for an interrupt, and then acting on that interrupt, reading a received byte or
checking the various status registers, as shown below.

write_register1(REG_TRANSMIT, x"10");
wait until (int2 = '1' and int1 = '1');
read_register1(REG_RECEIVE, data_read1);
read_register2(REG_RECEIVE, data_read2);

Test sets were written to test all of the error flags. Basic transmission tests verified that the two
nodes could communicate successfully. Other test cases, like parity error and checksum error
detection, required driving the bus directly. All test cases passed, confirming the design is
internally consistent.

www.BDTIC.com/XILINX

http://www.xilinx.com

14 www.xilinx.com XAPP432 (v1.1) April 3, 2007

Testing MethodologyR

Physical Testing
The controller designed is normally a small part of a much larger system, and as such any
testing beyond basic protocol compliance is highly application-dependent. Regardless, a
physical demonstration was designed to show the CPU interface and loopback operation in a
single-node LIN network. The design was targeted for the Nu Horizons CoolRunner-II
development board, shown in Figure 11.

Figure 11: Nu Horizons Development Board

This board includes two CPLDs, one for primary development, and a smaller one for I/O
interfacing. The second CPLD made this an attractive platform for prototyping, since it
performed both the necessary 5V tolerant voltage translation and could also be used for simple
interfacing. A simple VHDL UART provided the basic interface needed to access the LIN
controller's registers through a PC serial port.

A graphical front-end was created using Labview. The interface shows the values of all of the
controller's registers and simulates the operation of a simple sensor/display network as it might
be found in an automobile. The values at the sensors were transmitted through the LIN network

www.BDTIC.com/XILINX

http://www.xilinx.com

Conclusion

XAPP432 (v1.1) April 3, 2007 www.xilinx.com 15

R

(via loopback), subsequently received, and then used to update the displays. The functioning
Labview interface is shown in Figure 12.

Figure 12: Sample Labview Interface

A loopback jumper connected between RxD and TxD emulated the LIN transceiver, which
simultaneously receives the transmission currently being sent. A byte sent by the transmitting
slave task would be subsequently received by the receiving slave task. Correct operation can
be confirmed from Labview by comparing the sent byte to the received byte. Additionally, the
error flags can be used to perform this function.

Conclusion The completed controller, when synthesized for a Xilinx XC2C256 target, used approximately
80% of its resources. The maximum external clock rate, as estimated by the Xilinx synthesis
tools, is 25.7MHz, more than sufficient to support the maximum LIN bitrate of 19200 bps. The
timing and synthesis results are summarized in Table 6.

Functional simulation verified that the controller is internally consistent; that is, a network
composed of these controllers can communicate with each other and each node correctly
raises error conditions.

Physical testing verified that the implementation worked correctly in a single-node LIN network,
and also verified that the configuration and status registers and CPU interface functioned
correctly.

Further testing is necessary to confirm that this implementation conforms to all requirements of
the LIN specification, correctly functions in a multinode LIN network, and successfully
interoperates with other LIN implementations.

Table 6: XC2C256 Utilization

Macrocells Product Terms Registers Pins Function Block
Inputs

Maximum Clock
Rate

210/256 (82%) 698/896 (78%) 169/256 (66%) 22/173 (13%) 527/640 (82%) 25.7MHz

www.BDTIC.com/XILINX

http://www.xilinx.com

16 www.xilinx.com XAPP432 (v1.1) April 3, 2007

ReferencesR

References CAN in Automation. CAN Specification 2.0, Part A

CAN in Automation. CAN Specification 2.0, Part B

LIN Consortium. LIN Specification Package

CoolRunner-II Evaluation Board

Design Files http://www.xilinx.com/products/silicon_solutions/cplds/resources/coolvhdlq.htm

Additional
Information

CoolRunner-II Datasheets and Application Notes

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/15/04 1.0 Initial Xilinx release.

04/03/07 1.1 Added link to design files.

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&category=-19214&sGlobalNavPick=&sSecondaryNavPick=
http://www.can-cia.de/downloads/specifications/?268
http://www.can-cia.de/downloads/specifications/?269
http://www.lin-subbus.org/
http://www.nuhorizons.com/services/development/Xilinx/CoolRunnerEvalBoard.html
http://www.xilinx.com/products/silicon_solutions/cplds/resources/coolvhdlq.htm

	Implementing a LIN Controller on a CoolRunner-II CPLD
	Summary
	Introduction
	LIN Controller Functionality
	Appropriate Uses for LIN
	CoolRunner-II Advantages for LIN

	LIN Protocol
	LIN Consortium
	LIN vs. CAN
	LIN Network and Frame Format

	Implementation
	Configuration Registers/CPU Interface
	Core State Machine
	Master Task
	Slave Task

	Clock Divider
	Majority Sampler
	Checksum Generator
	Parity Generator
	Receiver
	Transmitter
	LIN Transceiver
	CPLD Utilization

	CPU Interfacing
	Register Access Timing
	Controller Setup
	Frame Scheduling and Interrupt Handling

	Testing Methodology
	Simulation
	Physical Testing

	Conclusion
	References
	Design Files
	Additional Information
	Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

