
XAPP468 (v1.1) July 7, 2009 www.xilinx.com 1

© 2008–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

 Summary This application note describes a reference design that adds fail-safe mechanisms to the
MultiBoot capabilities of the Extended Spartan®-3A family of FPGAs (Spartan-3A,
Spartan-3AN, and Spartan-3A DSP FPGAs). The reference design configures specific FPGA
logic via an initial bitstream that determines which application (by alternate bitstreams) to load.
The decision as to which bitstream to load, if an alternate is loaded at all, is based on the
bitstream revision, the number of prior configuration attempts, and the integrity of the alternate
bitstreams. The algorithms that test bitstream integrity and select the bitstream image to load
are implemented using a PicoBlaze™ controller. Additional independent modules manage
communication with the Internal Configuration Access Port (ICAP) and the Serial Peripheral
Interface (SPI) flash device.

Introduction Traditionally, embedded applications using an FPGA with a changeable configuration also
include a microprocessor to manage bitstream loading. For example, the microprocessor
determines which of several bitstreams stored in a central repository is the latest version,
stores it in local memory, and loads the FPGA with this newer version. It can also monitor
INIT_B and DONE and handle file corruption or failed configuration attempts by reverting back
to an older or known good bitstream.

System-on-chip (SOC) designs using a microprocessor with dependencies on the FPGA
present a paradox. If the processor is embedded in the FPGA, how can it recover from a failed
FPGA configuration attempt? If the processor uses the FPGA to access memory, how can it
load the FPGA before the FPGA is configured?

The Extended Spartan-3A family solves these problems without the need for external
components. The MultiBoot capabilities of these devices enable the FPGA to load a
configuration from one of several bitstreams stored in local memory. The bitstream located at
0x0 always loads first. This bitstream can configure logic with the intelligence to load an
alternate bitstream version and to detect if this alternate bitstream is corrupted. If a short
configuration time is required, the initial bitstream can be a streamlined bootstrap designed to
quickly load a second bitstream. The MultiBoot functionality provides the best trade-off
between the low cost of a small flash memory with a single upgradeable bitstream and a large,
robust flash containing multiple bitstreams.

Figure 1 shows how this reference design organizes the bitstream images in flash. A bootstrap
image is always loaded first. The bootstrap image then examines the application images and
decides whether or not to use one of those images by issuing a MultiBoot command to the
ICAP.

Application Note: Extended Spartan-3A Family

XAPP468 (v1.1) July 7, 2009

Fail-Safe MultiBoot Reference Design
Author: Jim Wesselkamper

R

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 2

R

The content of the SPI flash can be organized in many other ways. The number of application
bitstreams can vary. Also, the amount of logic in the bootstrap image can vary from an image
that contains the bootstrap only to an image that contains the bootstrap and a complete
application as well.

Implementation The reference design implements the bootstrap loader (Figure 1) using SPI flash memory for
bitstream storage. The large, external SPI flash memory provided on the Spartan-3AN FPGA
Starter Kit board accommodates three application bitstreams plus the bootstrap bitstream. The
In-System Flash (ISF) memory of the Spartan-3AN device accommodates one application
bitstream plus the bootstrap bitstream. The MultiBoot functionality is not restricted to SPI
memories and can be used with other types of memory as well. Parts of the reference design
source code can be used to implement similar solutions on other Extended Spartan-3A family
designs using other packages and configuration modes.

The bootstrap loader determines which application bitstream is used to configure the FPGA.
The choice is based on the application bitstream revision, the history of prior configuration
attempts, and valid bitstream integrity. The bootstrap loader marks each configuration attempt
in a history record just before it instructs the ICAP to begin configuration with the application
bitstream. After the configuration is complete, the embedded application is then responsible for
writing and updating the application bitstreams in flash memory and marking a successful
configuration attempt as successful in the history record. Optionally, the configuration can
obtain a new application bitstream revision from a repository and write it into SPI memory.

The bootstrap design and the application designs use the same PicoBlaze processor-based
submodule to interface to the SPI flash memory. The PicoBlaze processor firmware supports
the functions needed by both sets of designs. These include:

• Evaluating and selecting the optimal application bitstream to load

• Accessing the flash memory to perform read, write, and erase operations

• Maintaining algorithms that keep track of each application bitstream's integrity

• Maintaining algorithms that update the history record to keep track of configuration
attempts

The firmware routines differ slightly between a bootstrap design (where a decision to configure
the FPGA a second time can take place) and an application design (where there is no decision,
but the current configuration in the history record must be marked as successful). The
PicoBlaze controller determines whether it is executing a bootstrap configuration or an

X-Ref Target - Figure 1

Figure 1: SPI Flash Memory Implementation

SPI Flash

Application 2
Bitstream

Application 1
Bitstream

Bootstrap
Bitstream

X468_01_081508

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 3

R

application configuration by examining the history record. Figure 2 shows the PicoBlaze
controller block diagram.

The PicoBlaze controller contains the PicoBlaze processor and several peripherals including:

• A MultiBoot state machine including the ICAP controller

• Configuration and status registers

• An SPI interface (connected to either the external or ISF memory)

• A UART interface for external control (optional)

• A JTAG interface for external control (optional)

• A register-based interface for external control (optional)

Registers are used to access and control these peripherals. The PicoBlaze controller also
accesses the peripheral registers and its own scratchpad memory on behalf of an external
entity (in this case, a script used by the reference design). This allows the external entity to read
and write the flash memory, query the status of the PicoBlaze controller, and initiate
reconfigurations.

The bootstrap and application bitstreams are stored in flash memory. The reference design
uses either the external 16 Mb SPI flash memory at location IC21 on the Spartan-3AN FPGA
Starter Kit board or the internal ISF memory of the Spartan-3AN FPGA. The larger external SPI
memory is divided into four equal parts, and the smaller internal ISF memory is divided into two
equal parts. The bootstrap loader starts at address 0x000000. Note that the Atmel PROM at
location IC9 can be used instead of the ISF.

Figure 3 shows the memory map used by the external M25P16 PROM at IC21. Figure 4 shows
the memory map used by either the internal ISF memory of the Spartan-3AN FPGA or the
external Atmel AT45DB161D PROM at IC9. These are only example memory maps. It is
important for the user to be aware of the structure of the flash memory that is used in their
application. For example, the use of 264-byte pages with the default addressing scheme of the
ISF (or Atmel PROM) result in addresses that do not exist. For this reason, the first application
bitstream begins at 0x100000 (a page boundary for the Atmel PROM) rather than 0x080000
(256 bytes into a 264-byte page).

X-Ref Target - Figure 2

Figure 2: PicoBlaze Controller Block Diagram

X468_02_092508

FPGA Top Level

PicoBlaze Controller

MultiBoot Logic

ICAP PicoBlaze
Processor

Block RAM

JTAGSPI

UART TX
UART RX

LED Control
(application)

RS-232

PROM

LEDs

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 4

R

The nature of the SPI flash memory forces several aspects of the implementation. Because the
flash memory is only sector erasable, the bitstream headers are placed in the same sector as
the bitstream loads. Therefore, each individual bitstream header must reside in a sector
separate from the other bitstream headers. Also, after a sector is erased, all the bytes contain
0xFF. A write command changes individual bits from a logic 1 to a logic 0, but a bit cannot be

X-Ref Target - Figure 3

Figure 3: External Flash Memory Map (ST Microelectronics M25P16 PROM at IC21)

X-Ref Target - Figure 4

Figure 4: ISF Memory Map (or External Atmel AT45DB161D PROM at IC9)

X468_03_080508

Application 3 Header

Application 2 Bitstream

Application 2 Header

Application 1 Bitstream

Application 1 Header

History

Application 3 Bitstream

0x180010

0x180000

0x100010

0x100000

0x080010

0x080000

0x070000

0x000000

Bootstrap Bitstream

X468_04_080508

Application 1 Bitstream

History
0x1FFE00

0x100010

0x100000

0x000000

Application 1 Header

Bootstrap Bitstream

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementation

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 5

R

written back to logic 1 after it is a logic 0. The bitstream header stores four pieces of
information:

• A 16-bit valid/invalid/empty code

• A 16-bit revision code

• A 16-bit cyclic redundancy check value (CRC-16)

• A 24-bit length field

The first header word indicates whether the associated bitstream is valid, invalid, or empty. A
value of 0xFFFF indicates that the flash memory contents for that bitstream are empty. A value
of 0x00FF indicates that the bitstream is valid. A value of 0x0000 indicates that the bitstream
was written but is no longer valid.

The second word contains the bitstream revision. A larger number indicates a more recent
bitstream revision. In this reference design, the bootstrap checks the revision to ensure that it
loads the most recent valid bitstream. Other implementations might use a date or time stamp
for this purpose.

The third word contains a CRC-16 value. To reduce configuration time, the reference design
does not process this value. Typically, a bootstrap or application configuration would process
this value to test bitstream integrity. An external entity might use this word to verify flash
memory content.

The fourth word contains a 24-bit value indicating the number of bytes in the bitstream. The
PicoBlaze processor uses this value to determine which portion of memory it should perform
CRC calculations on.

A bitstream is considered valid if all of the following conditions are met:

• The 16-bit valid/invalid/empty code is 0x00FF (valid).

• The bitstream images begins with some number of bytes containing 0xFF followed by
0xAA and 0x99. The ICAP controller uses this pattern to check for the reset sequence
and the synchronization sequence.

• The bitstream image has the sequence 0x31,0x61,0x<data>, where the MSB of
<data> is set within the first 64 bytes of the image. This is to check whether the BitGen
option -g reset_on_Err:Yes is set when the bitstream is generated. This option is
enabled in the ISE® software’s Project Navigator by selecting Retry Configuration if
CRC Error Occurs under the General Options for the Generate Programming File
process.

The bootstrap and application bitstreams use a page of flash memory as a history record to
keep track of unsuccessful configuration attempts by the application bitstreams (Figure 3 and
Figure 4). The history record occupies its own sector so it can be erased separately from the
bitstreams and headers. If the reference design uses the external SPI memory, the history
page is located at 0x070000. If the reference design is located in the ISF memory, the history
page is located at the last page of the flash memory. Aligning to an ISF page boundary provides
the additional advantage of allowing independent protection or lockdown of the bootstrap
image.

The history record is a list of bytes. The bootstrap uses the last byte in the list to remember
which application bitstream it is attempting to load and how many attempts are made. The fact
that a logic 0 cannot be written to a logic 1 in the SPI flash memory requires special encoding
of the number of attempts. For each load attempt, the bootstrap logic writes the bitstream
number to the most significant nibble of the history byte. The lower nibble is written with a 0xE
(0b1110) if this is the first attempt with the bitstream. The second and third attempts are 0xC
(0b1100) and 0x8 (0b1000), respectively. If the third attempt fails, this history byte is marked
0x00 and the bootstrap logic attempts to load the next bitstream, writing the next history byte
in the same way. If the FPGA is successfully configured, the application marks the current
history byte as 0x00. The history record always contains a string of 0x00 values and a single

www.BDTIC.com/XILINX

http://www.xilinx.com

External Interface and Control

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 6

R

non-zero value at the end. This last value is 0xFF if there is no history, or 0xnm where n
identifies the bitstream (1, 2, or 3), and m is the coded number of attempts. After the history
sector contains 256 entries of 0x00, it is erased, filling the whole sector. The first value now
contains 0xFF, which indicates no history.

A history record scenario is demonstrated here. The startup condition is an SPI memory where
bitstream 1 contains the highest revision but is corrupted. Bitstream 2 is the next lowest revision
and is valid and correct.

At first, the history contains all 0xFFs:

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF…

Bitstream 1 is attempted once and recorded in the history record:

0x1E 0xFF 0xFF 0xFF 0xFF 0xFF…

Bitstream 1 is attempted twice and recorded in the history record:

0x1C 0xFF 0xFF 0xFF 0xFF 0xFF…

Bitstream 1 is attempted a third time and recorded in the history record:

0x18 0xFF 0xFF 0xFF 0xFF 0xFF…

The bootstrap tries to load the next valid bitstream:

0x00 0x2E 0xFF 0xFF 0xFF 0xFF…

The load is successful. The application bitstream configures the FPGA, and the application
clears the history byte.

0x00 0x00 0xFF 0xFF 0xFF 0xFF 0xFF…

External
Interface and
Control

The registers and scratchpad available to the PicoBlaze processor are also available to an
external controller or program. The reference design uses a Tcl script running on a PC to
provide this access. The Tcl script can communicate to the PicoBlaze processor through the
JTAG or the UART port.

The PicoBlaze processor understands the commands shown in Table 1. The SPI memory can
be read and written or MultiBoot information can be gathered by using these five commands.

The demonstration relies on a Tcl script that provides a simplified user interface and issues
commands to the PicoBlaze processor based on the user input. The Tcl script handles the
complexities of the flash memory structure (addressing, page/block/sector organization,
read/write/erase commands, etc.) and the bitstream image (calculating CRC values and adding
the header). The Tcl script takes simplified user input (such as E for Erase a bitstream) and
issues the necessary PicoBlaze processor commands to perform the function (such as driving
SS_b Low and then sending the appropriate bytes to the SPI flash memory to erase the various
sectors, blocks and/or pages). An example of how the PicoBlaze processor commands can be
combined to write the PROM is shown in the text after Table 3.

Table 1: External Commands

Command
Function Command Format Return

Register Read R <addr> <data>

Register Write W <addr> <data> None

Scratchpad Read S <addr> <data>

Register Burst
Write

B <addr> <length_h> <length_l> <data_0> …
<data_n<>

None

CRC Check C <bitstream number> <crc_h>

<crc_l>

www.BDTIC.com/XILINX

http://www.xilinx.com

External Interface and Control

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 7

R

The PicoBlaze processor stores some pertinent basic information in its scratchpad. This
information can be read using the scratchpad read command. Table 2 shows the scratchpad
address map.

Table 2: Scratchpad Address Map

Scratchpad
Address Name Description

0x00 Spi_addr_hi
(PicoBlaze processor)

Reserved for PicoBlaze processor use

0x01 Spi_addr_mid
(PicoBlaze processor)

Reserved for PicoBlaze processor use

0x02 Spi_addr_low
(PicoBlaze processor)

Reserved for PicoBlaze processor use

0x03 Spi_mfg_ID SPI device manufacturing ID

0x04–0x07 Unused Reserved

0x08–0x09 BS #1: Valid/Invalid word 0xFFFF: Bitstream #1 empty
0x00FF: Valid
0x0000: Invalid

0x0A–0x0B BS #1: Revision Revision number for bitstream #1

0x0C–0x0D BS #1: Check value Check value for bitstream #1

0x0E–0x0F Unused

0x10–0x11 BS #2: Valid/Invalid word 0xFFFF: Bitstream #2 empty
0x00FF: Valid
0x0000: Invalid

0x12–0x13 BS #2: Revision Revision number for bitstream #2

0x14–0x15 BS #2: Check value Check value for bitstream #2

0x16–0x17 Unused

0x18–0x19 BS #3: Valid/Invalid word 0xFFFF: Bitstream #3 empty
0x00FF: Valid
0x0000: Invalid

0x1A–0x1B BS #3: Revision Revision number for bitstream #3

0x1C–0x1D BS #3: Check value Check value for bitstream #3

0x1E–0x1F Unused

0x20–0x2F Unused

0x30,0x31,0x32 Sorted_list Ordered list of bitstreams based on revisions

0x33 Unused

0x34 Boot_decision PicoBlaze processor’s decision on what to boot
based on revision and validity

0x35 New_history_byte History byte to be written when booting new
bitstream

0x36 History_scratch Current history byte

0x37 History_ptr_scratch Pointer to current history byte

0x38 Prompt % for bootstrap bitstreams
> for application bitstreams

www.BDTIC.com/XILINX

http://www.xilinx.com

External Interface and Control

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 8

R

The PicoBlaze processor uses register accesses to control its peripherals. It also performs
reads and writes to these peripheral registers on behalf of an external control. This mechanism
is used primarily to read and write the SPI memory. However, it can be used to do anything that
the PicoBlaze processor does, including forcing the boot of an alternate bitstream through the
ICAP. Table 3 shows the register address map.

Table 3: Register Address Map

Register
Address

Register
Access Name Description

0x00 Read-Only FPGA revision LSB Lowest order byte of FPGA revision

0x01 Read-Only FPGA revision MSB Highest order byte of FPGA revision

0x02 Read/Write Register Control Interface
Data

Read and write for register-based
control interface

0x03 Read-Only Register control FIFO status {tx_pres, 2'b0, tx_full,
rx_full, 2'b0, rx_pres}

0x10 Read/Write JTAG control interface data Read and write for JTAG-based control
interface

0x11 Read-Only JTAG control FIFO status {tx_pres, 2'b0, tx_full,
rx_full, 2'b0, rx_pres}

0x20 Read/Write RS-232 control interface Data Read and write for RS-232-based
control interface

0x21 Read-Only RS-232 control FIFO status {tx_pres, 2'b0, tx_full,
rx_full, 2'b0, rx_pres}

0x30 Read/Write SPI chip select {7'h0, SPI_ss_b}

0x31 Read/Write SPI write/read data Revision number

0x40 Read/Write MultiBoot address bits 7:0 Lowest order byte of PROM address for
the configuration image

0x41 Read/Write MultiBoot address bits 15:8 Second byte of PROM address for the
configuration image

0x42 Read/Write MultiBoot address bits 23:16 Third byte of PROM address for the
configuration image

0x43 Read/Write MultiBoot address bits 31:24 Highest order byte of PROM address
for the configuration image

0x44 Read/Write MultiBoot mode {5'h0, mb_mode}

0x45 Read/Write MultiBoot VSel {5'h0, vsel}

0x46 Read/Write MultiBoot iuse {7'h0, iuse}

0x47 Write-Only MultiBoot strobe Write only (forces ICAP state machine
to reconfigure the FPGA)

0x50 Read-Only Firmware configuration {4'h0, check_crc,
internal/external_b, pause,
bootstrap}

0x60 Write-Only CRC data Input for the 8-bit CRC-16 shift register

0x61 Read-Only CRC 7:0 Output of the 8-bit CRC-16 shift register

0x62 Read-Only CRC 15:8 Output of the 8-bit CRC-16 shift register

0x70 Read-Only Number of bitstreams Number of alternate application
bitstreams

www.BDTIC.com/XILINX

http://www.xilinx.com

HDL Parameters and Configuration

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 9

R

The example shown here reads from the SPI memory starting at 0x080000 using register
commands and the control interface:

W 30 00 # Drive SPI_ss_b Low

W 31 03 # Shift out SPI_address_byte 00

W 31 08 # Shift out MSB of SPI address byte

W 31 00 # Shift out middle SPI address byte

W 31 00 # Shift out LSB of SPI address byte

W 31 00 # Shift out data 00/shift in miso

R 31 # Read data shifted in from miso

W 31 00 # Shift out data 00/shift in miso

R 31 # Read data shifted in from miso

.

.

.

W 30 FF # Drive SPI_ss_b High

Normally, the bootstrap program reads the information it needs from the SPI flash memory and
immediately reboots to the application load. The reference design senses the position of SW3
on the Spartan-3AN FPGA Starter Kit board to allow the bootstrap to pause for user interaction
or to automatically configure the application load.

The Extended Spartan-3A family configuration logic contains a counter that keeps track of
failed configurations. After the configuration logic has counted three configuration attempt
failures, the fourth failure halts the FPGA and asserts INIT_B. The counter can only be cleared
by asserting the PROG_B pin. This behavior is undesirable for fail-safe MultiBoot operation
where the PicoBlaze processor wants to pick an alternate or golden image after three failed
configuration attempts. The PicoBlaze controller has an output port, PROG_B, that can be
connected to the FPGA PROG_B pin. The PicoBlaze controller asserts this signal to a logic 0
any time an application bitstream is marked invalid. This can occur after three failed
configuration attempts from that bitstream or from any mismatch between the stored CRC
value in the bitstream header and the value calculated across the bitstream itself. The user
logic can assert PROG_B, if needed, under these conditions.

HDL Parameters
and
Configuration

The PicoBlaze processor firmware provided with the reference design uses a discovery
algorithm to determine what external flash memory is used. The discovery algorithm uses a
combination of register values set in the HDL parameters and information read from the SPI
devices. The algorithm allows the reference design to be configured to use the internal ISF
memory of the Spartan-3AN FPGAs or the external flash memory provided on the starter kit
board.

0x71 Read-Only Bitstream offset 1 Upper byte of 24-bit SPI location for
bitstream #1

0x72 Read-Only Bitstream offset 2 Upper byte of 24-bit SPI location for
bitstream #1

0x73 Read-Only Bitstream offset 3 Upper byte of 24-bit SPI location for
bitstream #1

Table 3: Register Address Map (Cont’d)

Register
Address

Register
Access Name Description

www.BDTIC.com/XILINX

http://www.xilinx.com

HDL Parameters and Configuration

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 10

R

For example:

parameter SPI_DEVICE = “M25P16”;

Allowable values are M25P16, AT45DB161D, 3S50AN, 3S200AN, 3S400AN, 3S700AN, and
3S1400AN. Other SPI devices and memory maps can be accommodated by editing the
picoController.v file.

The SPI_DEVICE value also controls the number of bitstreams and the SPI address locations
for the bitstreams. These values are hard-coded in the HDL and are shown in Table 4.

The HDL also provides a mechanism for ignoring these hard-coded values and setting them to
unique values. This requires setting the USE_UNIQUE_CFG parameter and editing the values
associated with the USE_UNIQUE_CFG section of the HDL within the picoController.v
and picoController.vhd HDL files.

Use of the control interfaces is also controlled by HDL parameters. These parameters allow
unused control interfaces to be left out of in the synthesized design, making it smaller. Also, the
boundary-scan logic can be used for other purposes when the JTAG interface for PicoBlaze
processor communication is not used.

parameter USE_REG = “TRUE”;

parameter USE_JTAG = “FALSE”;

parameter USE_RS232 = “TRUE”;

Setting these parameter values to TRUE instructs the synthesis tool to include the referenced
interface. The value FALSE instructs the synthesis tool to not include the referenced interface,
producing a smaller design.

The PicoBlaze processor can optionally check the entire bitstream image stored in flash
memory against the CRC-16 value contained in the header. This function is controlled using the
CHECK_CRC HDL parameter. A TRUE value enables the CRC check. This check protects
against errors in the bitstream image that might occur but would not cause INIT_B to go Low at
the end of a bitstream. The downside of including this check is that it increases the
configuration time because the entire application image is read twice; first for the PicoBlaze
processor to check against the CRC, and then a second time by the FPGA configuration logic
while configuring the FPGA.

The BOOTSTRAP_FW parameter determines which version of the firmware is run by the
PicoBlaze processor. If the value is set to TRUE, the PicoBlaze processor determines that it is
running from the initial bootstrap load. It examines the application loads and decides whether or
not to jump to the application loads and which application load to jump to. If the value is FALSE,

Table 4: SPI_DEVICE Parameter Values

SPI_DEVICE History Location
Number of
Application
Bitstreams

Bitstream #1
Location

Bitstream #2
Location

Bitstream #3
Location

M25P16 0x070000 3 0x080000 0x100000 0x180000

AT45DB161D 0x3FFC00 3 0x100000 0x200000 0x300000

XC3S50AN 0x03FE00 1 0x020000 N/A(1) N/A

XC3S200AN 0x0FFE00 1 0x080000 N/A N/A

XC3S400AN 0x0FFE00 1 0x080000 N/A N/A

XC3S700AN 0x1FFE00 1 0x100000 N/A N/A

XC3S1400AN 0x3FFC00 1 0x200000 N/A N/A

Notes:
1. N/A = not available

www.BDTIC.com/XILINX

http://www.xilinx.com

ICAP Module

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 11

R

the PicoBlaze processor determines that it is running from an application load. In this case, the
PicoBlaze processor clears the most recent, non-zero history byte.

ICAP Module The ICAP module is contained in the file
source/picoController/picoboot/picoboot.v. This module instantiates the ICAP
primitive and communicates the MultiBoot command to the ICAP primitive. The picoboot
module inputs are described in Table 5. There are no outputs.

SPI Module The SPI module is contained in the file source/picoController/spi/spi.v. This module
provides logic for a byte-wide interface to communicate with the serial SPI interface. The
protocol for building larger SPI commands from these bytes is not handled by the SPI module
and must be provided by external logic. This logic is implemented by the PicoBlaze processor
for this reference design. The SPI module is controlled by two byte-wide registers described in
Table 6.

The ports of the SPI module are defined by Table 7.

Table 5: Picoboot Module (picoboot.v) Inputs

Port Name Direction Description

clk Input A synchronous clk for sampling the inputs. This clock also drives
the ICAP configuration clock and must meet the AC
specifications for the device being used.

reboot Input A pulse on the reboot command initiates a state machine that
sends the necessary bits to the ICAP primitive to initiate the
MultiBoot command.

internal_addr[31:0] Input The 32-bit pointer to the SPI flash address that contains the first
byte of the MultiBoot bitstream.

internal_use Input When this signal is Low, the values in the internal configuration
mode register can override the values selected by the I/O pins
for MODE and VS bits. Configuration modes different than those
specified by the external pins are not supported by Spartan-3A
devices. This must be a logic 0.

internal_mode Input The 3-bit mode value that is loaded into the configuration mode
register to determine the configuration method. Because
internal_use must equal 0, this value does not matter.

internal_vsel Input The 3-bit vsel value that is loaded into the configuration mode
register. Because internal_use must equal 0, this value does not
matter.

Table 6: SPI Status and Data Registers

Register Bit Name Description

Status

0 (LSB) SS_B When asserted Low (logic 0), the SPI Flash SS_B
signal is driven Low.

1 BUSY This signal is active High when the SPI module is busy
shifting data to and from the parallel data register.

7:2 – Not used.

Data 7:0 –

When this register is written, the value written into the
register is shifted out MSB-first from the SPI master-out-
slave-in (mosi) pin to the SPI flash device. At the same
time, data from the SPI master-in-slave-out (miso) pin is
shifted into the register. The data can then be read from
this register to read data from the SPI device.

www.BDTIC.com/XILINX

http://www.xilinx.com

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 12

R

Demonstration
Setup

Before running the demonstration, the software listed in Table 8 must be installed on the
demonstration computer. The starter kit, computer hardware requirements, and cables are
listed in Table 9. Table 10 lists the required design files.

Hardware, Software, and Design Files

Table 7: SPI Module (spi.v) Ports

Port name Direction Description

CLK Input Drives the synchronous logic in the module. The spi_clk is
half the frequency of this clock.

RESET Input This signal synchronously resets the logic in the module.

PICO_ADDR[2:0] Input Selects which of the two registers is read or written. Bits 2
and 1 are unused.

PICO_DATAIN[7:0] Input Contains the write data for the selected register.

PICO_DATAOUT[7:0] Output Contains the read data for the selected register.

PICO_WE Input Synchronous write strobe. Causes PICO_DATAOUT[7:0] to
be clocked into the selected register. If the PICO_ADDR[0] is
also a 1, it causes one byte to be transferred to and from the
SPI flash.

PICO_RD Input Read strobe. Not used.

miso Input Master-in-slave-out data signal for the SPI flash.

mosi Output Master-out-slave-in data signal for the SPI flash.

sck Output Clock for the SPI flash device.

ss_b Output Chip select signal for the SPI flash (active Low).

Table 8: Required Software

Description Comments

ISE WebPACK™ Software(1) Version 9.2i SP1 or later. Software is included with the
Spartan-3AN FPGA Starter Kit.

ActiveTcl Scripting Language(2)

version 8.4.x.x
The scripts used by this application are created in
ActiveTcl standard distribution, version 8.

Note: The ISE software Tcl interface does not work with
this reference design. The Tcl script uses a CRC-16
module provided by Active Tcl that is not supported by the
ISE software Tcl interface.

Notes:
1. The latest version of free ISE WebPACK software is available at:

http://www.xilinx.com/ise/logic_design_prod/webpack.htm
2. The free standard distribution of ActiveTcl is available at: http://www.activestate.com/Products/activetcl/

Table 9: Required Hardware

Description Comments

Xilinx Spartan-3AN FPGA Starter Kit
(part number:
HW-SPAR3AN-SK-UNI-G(1))

Contains an XC3S700AN Spartan-3AN FPGA with ISF
memory and external SPI memory devices.

USB cable Included with the Spartan-3AN FPGA Starter Kit. Used
to download the initial bitstream.

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://www.activestate.com/Products/activetcl/

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 13

R

Configuring the Design Files

On the computer used for this demonstration:

1. Create a temporary directory.

2. Extract xapp468.zip to this directory.

3. Extract the PicoBlaze processor files in listed in Table 11 to this directory:

Your_Temp_Directory\Multiboot_Spartan3AN_Jtag\source\picoController\picoblze

4. Extract the PicoBlaze processor files listed in Table 12 to this directory:

Your_Temp_Directory\Multiboot_Spartan3AN_Jtag\VHDL\picoController\picoblze

RS-232 9-pin straight-through cable Not included. Used for communication between the
starter kit board and computer.

Personal computer running Microsoft
Windows® XP Professional operating
system

Requires a USB and RS-232 port.

Notes:
1. The Spartan-3AN FPGA Starter Kit is available for online purchase at:

http://www.xilinx.com/products/devkits/HW-SPAR3AN-SK-UNI-G.htm

Table 10: Required Design Files

Description Comments

xapp468.zip Contains design files and other files required by the reference design. The
design files for the reference design can be downloaded from:
https://secure.xilinx.com/webreg/clickthrough.do?cid=113104

KCPSM3.zip Contains the PicoBlaze processor files and other supporting files. The free
PicoBlaze processor IP core is available at:
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

Table 11: Relocation of PicoBlaze Processor Verilog Files

Source File Filename

KCPSM3.zip kcpsm3.v

kcuart_rx.v

kcuart_tx.v

uart_rx.v

uart_tx.v

Kcpsm3.exe

JTAG_Loader_ROM_form.v

Table 9: Required Hardware (Cont’d)

Description Comments

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/products/devkits/HW-SPAR3AN-SK-UNI-G.htm
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm
https://secure.xilinx.com/webreg/clickthrough.do?cid=113104

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 14

R

Configuring the Hardware

Position the starter kit jumpers:

1. Set power switch SW5 to the OFF position.

2. Configure the jumpers on J26 for SPI mode (Figure 5).

3. Set switch SW3 to the logic 1 position. This enables the PAUSE feature on the MultiBoot
controller so that the configuration of application loads is not immediate.

4. Configure the boot select jumpers on J1 for the Atmel SPI PROM (Figure 6).

5. Configure jumpers across J23 and J25 to enable direct SPI programming (Figure 7).

Table 12: Relocation of PicoBlaze Processor VHDL Files

Source File Filename

KCPSM3.zip kcpsm3.vhd

kcuart_rx.vhd

kcuart_tx.vhd

uart_rx.vhd

uart_tx.vhd

kcpsm3.exe

X-Ref Target - Figure 5

Figure 5: J26 Configured for SPI Mode

X-Ref Target - Figure 6

Figure 6: J1 Configured for the Atmel SPI PROM

X-Ref Target - Figure 7

Figure 7: J23 and J25 Configured for Direct SPI Programming

X468_05_080508

M0

M1

M2

J26

X468_06_080508

J1J1

X468_07_080508

J25

J23

www.BDTIC.com/XILINX

http://www.xilinx.com

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 15

R

Connect the starter kit board to the computer:

Note: Additional information about connecting the starter kit RS-232 serial port to a computer is
available in the Spartan-3A/3AN FPGA Starter Kit Board User Guide [Ref 1].

1. Connect the RS-232 cable between J36 on the starter kit board and the serial 9-pin
connector on the computer.

2. Connect the USB cable between J3 on the starter kit board and a USB connector on the
computer.

3. Connect the power converter cord to J35 on the starter kit board.

4. Turn on the starter kit board by setting switch SW5 to the ON position.

Running the Demonstration

The bootstrap controller must first be loaded into the FPGA. The bootstrap controller is then
used to program the bootstrap bitstream image into the SPI PROM.

Upload the Bootstrap Controller to SPI Memory

1. Use the iMPACT software to load the iMPACT project file bootstrap.ipf from the
bootstrap directory.

2. Click on the Direct SPI Programming tab.

3. Right-click on the image of the SPI PROM (Figure 8) and select the Program command
from the menu. Press the PROG_B button on the starter kit board, and while holding it
down, click OK. Holding the PROG_B button prevents any bitstream that is already in the
PROM from actively driving the SPI bus while the iMPACT software is trying to drive the
bus.

X-Ref Target - Figure 8

Figure 8: iMPACT Software for Direct SPI Configuration of Bootstrap Bitstream

X468_08_080508

www.BDTIC.com/XILINX

http://www.xilinx.com

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 16

R

The SPI memory now contains the bootstrap bitstream, and the FPGA can be configured from
the SPI memory. The first application image is programmed next.

Open the Command Window
1. In the taskbar, click Start.

2. From the menu select Run to open the Run dialog box.

3. In the text field, type cmd.

4. Click OK to open the Command window.

The command line is used to enter the remaining commands.

Upload Application 1 to SPI Memory

1. Change the directory to the reference design’s Scripts directory.

2. Enter tclsh mbScript.tcl to run the Tcl script. The command window displays the
information shown in Figure 9.

3. Enter W.

4. When asked for the bitstream location, enter 1. Enter application1.hex as the file
name.

5. When asked for a revision number, enter 0101. The file begins to upload, and the display
shows the number of kilobytes sent. Wait until the file is completely sent.

6. Enter R to reset the PicoBlaze processor and refresh the display. The command window
displays the information shown in Figure 10. The bitstream table has changed, and the
boot decision now specifies bitstream location 1.

7. Enter Q to exit the Tcl script.

The SPI memory now contains the bootstrap bitstream and the bitstream for Application 1.

X-Ref Target - Figure 9

Figure 9: Initial Display after Running mbScript.tcl

X468_09_080508

www.BDTIC.com/XILINX

http://www.xilinx.com

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 17

R

Reconfigure the FPGA Using the Bootstrap

These steps demonstrate the use of the bootstrap bitstream to initially configure the FPGA on
the starter kit board and then reconfigure the FPGA with Application 1.

1. Push starter kit BTN1 (PROG_B button) to start configuring the FPGA using the bootstrap
program from the SPI memory.

2. LED LD0 flashes, which indicates that the bootstrap program is operating. After a
10-second delay (due to the PAUSE bit on SW3 being a logic 1), the bootstrap loads
Application 1.

3. When LEDs LD0 through LD7 begin flashing in sequence from LD0 to LD7, Application 1
is operating.

Upload Application 2 to SPI Memory
1. Enter tclsh mbScript.tcl to run the Tcl script.

2. Enter W.

3. When asked for the bitstream location, enter 2. Enter application2.hex as the file
name.

4. When asked for a revision number, enter 0201. The file begins to upload, and the display
shows the number of kilobytes sent. Wait until the file is completely sent.

5. Enter Q to exit the Tcl script.

6. Push starter kit BTN1 (PROG_B button).

7. Enter tclsh mbScript.tcl to display the information shown in Figure 11.

The bitstream table has changed and the boot decision now specifies bitstream location 2
because bitstream 2 has a higher revision number than bitstream 1.

8. Enter Q to exit the Tcl script.

X-Ref Target - Figure 10

Figure 10: mbScript.tcl Display after Writing Application Bitstream

X468_10_080508

www.BDTIC.com/XILINX

http://www.xilinx.com

Demonstration Setup

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 18

R

The SPI memory now contains the bootstrap bitstream and the bitstreams for both
Application 1 and Application 2.

Corrupt the Application 2 Bitstream

1. Push starter kit BTN1 (PROG_B button) to initiate the bootstrap program.

2. Wait until Application 2 is operating as indicated by LEDs LD0 through LD7 flashing in
sequence from LD7 to LD0.

3. Enter tclsh mbScript.tcl to run the Tcl script.

4. Enter O to overwrite a byte in the SPI memory.

5. Enter 201000 as the address to overwrite (simulates a corrupted value).

6. Enter 00 as the data value to write.

7. Enter Q to exit the Tcl script.

The Application 2 bitstream in SPI memory is now corrupted. The bootstrap logic detects this
on the next boot attempt and falls back to loading Application 1.

Fallback Demonstration
1. Push starter kit BTN1 (PROG_B button) to initiate the bootstrap program.

2. Bootstrap operation is indicated by LD0 flashing.

3. After 10 seconds, the bootstrap finds that Application 2 is corrupted and loads Application
1 as indicated when LEDs LD0 through LD7 flash in sequence from LD0 to LD7.

4. Enter tclsh mbScript.tcl to display the information shown in Figure 12.

5. Application 2 (indicated as Bitstream 2 in the table on the display shown in Figure 12) is
now marked as invalid (0x0000), and the Boot History indicates that bitstream 1 was
successfully loaded.

X-Ref Target - Figure 11

Figure 11: mbScript.tcl Display after Writing Application 2 Bitstream

X468_11_080508

www.BDTIC.com/XILINX

http://www.xilinx.com

Conclusion

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 19

R

t

Device Utilization

Table 13 shows approximate device utilization in the XC3S700AN FPGA.

Conclusion The MultiBoot capability of the Extended Spartan-3A family provides a means for system
architects to implement microprocessor designs inside the FPGA, while maintaining the
fallback and fail-safe FPGA reconfiguration mechanisms needed by robust architectures. This
implementation requires no additional components. The density and cost advantages provided
by SOC designs can be realized in architectures requiring a fail-safe upgrade solution for
FPGAs.

Reference
Design Files

Links to the reference design files are listed in Table 10, page 13.

The reference design matrix is shown in Table 14.

X-Ref Target - Figure 12

Figure 12: mbScript.tcl Display after Reverting to Application 1

Table 13: Device Utilization

Resource Number Used Percent of
Device Used

Flip-Flops 270 2.3%

4-input Look-Up
Tables 610 5.2%

Block RAMs 1 5.0%

Slices 360 6.1%

X468_12_080508

www.BDTIC.com/XILINX

http://www.xilinx.com

Reference Design Files

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 20

R

Table 14: Reference Design Matrix

Parameter Description

Developer Name Xilinx

Target Devices (stepping level, ES, production, speed grades) Extended Spartan-3A family

Source Code Provided Yes

Source Code Format Verilog and VHDL

Design Uses Code/IP from an Existing Reference
Design/Application Note, Third Party, or CORE Generator™
software

Yes

Simulation

Functional Simulation Performed No

Timing Simulation Performed No

Testbench Used for Functional Simulations Provided No

Testbench Format

Simulator Software Used/Version
(e.g., ISE software, Mentor, Cadence, other)

ISE software

SPICE/IBIS Simulations No

Implementation

Synthesis Software Tools Used/Version XST

Implementation Software Tools Used/Versions ISE software, version 10.1,
Service Pack 1

Static Timing Analysis Performed Yes

Hardware Verification

Hardware Verified Yes

Hardware Used for Verification Spartan-3AN FPGA Starter Kit
Board

www.BDTIC.com/XILINX

http://www.xilinx.com

References

XAPP468 (v1.1) July 7, 2009 www.xilinx.com 21

R

References This section lists documents referenced in this application note:

1. UG334, Spartan-3A/3AN FPGA Starter Kit Board User Guide.

Additional
Resources

This section lists additional information useful to this application note:

1. UG331, Spartan-3 Generation FPGA User Guide.

2. UG332, Spartan-3 Generation Configuration User Guide.

3. UG333, Spartan-3AN FPGA In-System Flash User Guide.

4. Spartan-3A/3AN FPGA Starter Kit Schematic
http://www.xilinx.com/support/documentation/boards_and_kits/s3astarter_schematic.pdf

5. PicoBlaze Processor User Lounge
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

6. Other Spartan-3A FPGA reference designs
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm

Revision
History

The following table shows the revision history for this document:

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

11/04/08 1.0 Initial Xilinx release.

07/07/09 1.1 Valid bitstream conditions on page 5 updated per ISE software, version 11.
Revised “Fallback Demonstration,” page 18, step 5. Changed the invalid
value from 0x00FF to 0x0000.

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug334.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/s3astarter_schematic.pdf
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm

	Fail-Safe MultiBoot Reference Design
	Summary
	Introduction
	Implementation
	External Interface and Control
	HDL Parameters and Configuration
	ICAP Module
	SPI Module
	Demonstration Setup
	Hardware, Software, and Design Files
	Configuring the Design Files
	Configuring the Hardware
	Running the Demonstration
	Upload the Bootstrap Controller to SPI Memory
	Open the Command Window
	Upload Application 1 to SPI Memory
	Reconfigure the FPGA Using the Bootstrap
	Upload Application 2 to SPI Memory
	Fallback Demonstration

	Device Utilization

	Conclusion
	Reference Design Files
	References
	Additional Resources
	Revision History
	Notice of Disclaimer

