
XAPP491 (v1.0) October 4, 2006 www.xilinx.com 1

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Differential signals, such as LVDS or LVPECL, can be difficult to route on simple, four-layer or
six-layer PCBs without excessive use of vias. The reason has been because the positive pins
on the driver must drive the corresponding positive pins on the receiver, and the negative pins
must drive the receiver’s negative pins. Sometimes the traces end up with the wrong
orientation, in effect, adding an inverter to the circuit. This application note shows how
Spartan™-3 Generation FPGAs, with just the inclusion of an inverter in the receiver datapath,
can avoid excessive use of vias and fix accidental PCB trace swapping without requiring a PCB
respin. The technique is equally applicable to the case where the FPGA is the driver, and
swapping traces allows easier PCB routing to another device or to a connector.

Introduction Figure 1 shows a PCB example with the positive pins driving the receiver’s positive pins and the
negative pins driving the receiver’s negative pins. If the pins are accidentally swapped, the PCB
traces effectively become an inverter, possibly requiring a board respin.

Figure 2 shows how the Spartan-3 Generation FPGA resolves this problem by including the
necessary inverter in the receiver datapath. With this feature, the designer can choose to
deliberately swap the traces for simplified routing. Thus the PCB designer is free to lay out the

Application Note: Spartan-3 Generation FPGA Families

XAPP491 (v1.0) October 4, 2006

Inverting LVDS Signals for Efficient PCB
Layout in Spartan-3 Generation FPGAs
Author: Nick Sawyer and Gary Lawman

R

Figure 1: PCB Layout Requires Use of Vias to Swap Traces

Figure 2: PCB Layout Requires No Vias to Swap Traces

+
-

IOB

P

N

P

N

P

N

N

P

N

P

N

P

Two vias needed on PCB

CLB

X491_01_041906

+
-

P

N

P

N

P

N

N

P

N

P

N

P IOB

rx_input rx_input_fix

CLB

X491_02_041906

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP491 (v1.0) October 4, 2006

Absorbed Inverter Examples
R

differential pairs for the maximum signal integrity; any swapping that occurs can be corrected
inside the FPGA. In cases where a DCM is being used (see “Asynchronous Inputs”), this
routing freedom applies only to data lines but not to clock lines. Swapping the lines can never
damage the device.

Absorbed
Inverter
Examples

There are two cases where inverters can be absorbed forward:

1. When driving flip-flop inputs directly

2. When driving into a logic function

In Case #1, the Spartan-3 Generation FPGAs have a multiplexer on the direct (D) inputs of the
CLB flip-flops, as shown in Figure 3. This multiplexer selects between the true and the
complement of the input signal. The multiplexer is configured from a configuration cell, which is
initialized by the bitstream loaded into the device. The user cannot access the multiplexer
during operation.

In Case #2, the inverter is simply absorbed. For example, if an inverter performing B = ~A is
followed by an AND gate performing D = B AND C, a simple substitution has an AND gate
performing D = ~A AND C with no inverter; in other words, the inverter absorption is always
"free" in terms of logic utilization and delay.

This mechanism for inverter absorption also applies to the IOB output flip-flops. Again the
absorption is "free" to include an inverter in the output path of the FPGA, if needed to make
PCB layout easier. This mechanism can help where the FPGA is driving a connector with
predefined pins that directly match to the N and P LVDS outputs of the FPGA.

Asynchronous
Inputs

Figure 2 is the simplest example to consider. The received, swapped LVDS signal will be used
in combinational logic inside the FPGA. In this example, only a simple inverter needs to be
added to the code. The code for this inverter is shown below in Verilog and VHDL:

This inverter can be absorbed either into the combinational logic driven by the input signal or
into the D input of a flip-flop in the interior of the FPGA. It cannot be absorbed into a flip-flop in
the IOB of the FPGA, into a DCM, or into a BUFGMUX clock buffer. For this reason, the
flexibility of pin swapping cannot be applied to clock signals where that clock signal is going to
be used to clock in data. If the clock in question is just an oscillator for a system, then the lines
can be swapped and not re-inverted without any negative effects.

Figure 4 shows an example where the input is actually a bus of n signal pairs. Some pairs are
correct whereas others are swapped for convenience. In this example, it makes sense to define

Figure 3: Programmable Inverter in Front of CLB Flip-Flops

Input Signal

Output Signal to D Input of Flip-Flop

Configuration Cell
X491_03_041406

Verilog: assign rx_input_fix = ~rx_input;

VHDL: rx_input_fix <= not rx_input;

www.BDTIC.com/XILINX

http://www.xilinx.com

Synchronous Use of IOB Input Flip-Flops

XAPP491 (v1.0) October 4, 2006 www.xilinx.com 3

R

a mask in the design corresponding to the n inputs. The mask is used to selectively invert (in
fact, exclusive OR) those bits that need correction and not invert the correctly received bits. In
Figure 4, bits 0 and 2 are correct, and bit 1 needs inversion. The best way to handle the
correction in the code is to use generate loops that instantiate the input buffer and perform the
optional inversion on a bit-by-bit basis.

The following Verilog code performs the receive inversion using generate loops:

.
parameter [2:0] SWAP_MASK = 3'b010;
.
.
genvar i;
generate
for (i = 0; i <= 2; i = i + 1)
begin: loop0
IBUFDS
#(.IOSTANDARD("LVDS_25"), .IBUF_DELAY_VALUE("0"), .DIFF_TERM("FALSE"))
ibuf_d (.I(datain_p[i]), .IB(datain_n[i]), .O(rx_input[i]));
assign rx_input_fix[i] = rx_input[i] ^ SWAP_MASK[i];
end
endgenerate

The following VHDL code performs the receive inversion using generate loops:

.
constant SWAP_MASK : std_logic_vector(2 downto 0):= "010";
.
.
loop0: for i in 0 to 2 generate
ibuf_d: ibufds generic map
(IOSTANDARD => "LVDS_25", IBUF_DELAY_VALUE => "0", DIFF_TERM => FALSE)
port map
(i => datain_p(i), iB => datain_n(i), o => rx_input(i));
rx_input_fix(i) <= rx_input(i) xor SWAP_MASK(i);
end generate;

This mechanism is easily extendable to various bit widths by changing the characters marked
in red, boldface text.

Synchronous
Use of IOB
Input Flip-Flops

Typically, input signals are registered in the IOB flip-flops because high-speed data
transmission is the most common reason for using LVDS. Data can be registered using either:

• a single data rate (SDR) technique, which uses just one (usually positive edge triggered)
flip-flop in the IOB

or

• a double data rate (DDR) technique, where the input data line is sampled using both
positive and negative edge triggered flip-flops

Figure 4: Some Bus Traces are Polarity Swapped on the PCB to Simplify Routing

rx_input[0] rx_input_fix[0]

rx_input[1] rx_input_fix[1]

rx_input[2] rx_input_fix[2]
IOB CLB

X491_04_041906

N
P

N

P
N
P

P
N

P
N
P

N

parameter [2:0] SWAP_MASK = 3’b010;

+
-

+
-

+
-

www.BDTIC.com/XILINX

http://www.xilinx.com

4 www.xilinx.com XAPP491 (v1.0) October 4, 2006

Synchronous Use of IOB Input Flip-Flops
R

In both cases, it is not possible to invert the input signal between the input amplifier and the flip-
flop because the flip-flops within the IOB blocks do not have invertible inputs. The inverters
need to be added after the IOB input flip-flop(s), and they can be absorbed into the following
registered or combinational logic.

SDR Example

Figure 5 shows the SDR scenario with one flip-flop in the IOB.

The following code illustrates the SDR registered case for the same generate loop example.
The only change is the addition of the flip-flop instantiation.

In Verilog:

.
parameter [2:0] SWAP_MASK = 3'b010;
.
.
genvar i;
generate
for (i = 0; i <= 2; i = i + 1)
begin: loop0
IBUFDS#(.IOSTANDARD("LVDS_25"), .IFD_DELAY_VALUE("0"), .DIFF_TERM("FALSE"))
ibuf_d (.I(datain_p[i]), .IB(datain_n[i]), .O(rx_input[i]));
FD fd_d (.C(clkin), .D(rx_input[i]), .Q(rx_input_reg[i]));
assign rx_input_fix[i] = rx_input_reg[i] ^ SWAP_MASK[i];
end
endgenerate

In VHDL:

.
constant SWAP_MASK : std_logic_vector(2 downto 0):= "010";
.
.
loop0: for i in 0 to 2 generate
ibuf_d: ibufds
generic map (IOSTANDARD => "LVDS_25", IFD_DELAY_VALUE => "0", DIFF_TERM => FALSE)
port map (i => datain_p(i), iB => datain_n(i), o => rx_input(i));
fd_d: fd port map (c => clkin, d => rx_input(i), q => rx_input_reg(i));
rx_input_fix(i) <= rx_input_reg(i) xor SWAP_MASK(i);
end generate;

This mechanism is easily extendable to various bit widths by changing the characters marked
in red, boldface text.

Figure 5: SDR Registered Receiver

rx_input
+
-

rx_input_fix rx_input_reg

clock

CLBIOB

P

N

P

N

P

N

N

P

N

P

N

P
D

X491_05_041906

www.BDTIC.com/XILINX

http://www.xilinx.com

Synchronous Use of IOB Input Flip-Flops

XAPP491 (v1.0) October 4, 2006 www.xilinx.com 5

R

Input DDR Example

Figure 6 shows the receive DDR scenario, where each input line generates two internal data
lines that might need inverting. For DDR inputs with the Spartan-3E FPGA, the new IDDR2
structure of input flip-flops is recommended for use. This structure can make the internal logic
easier to design by removing any paths from a falling edge to the next rising edge. For more
information on IDDR2, see DS312, Spartan-3E FPGA Family Data Sheet.

The following code illustrates the DDR registered receiver case for the same generate loop
example. The only change is the addition of the IDDR2 instantiation for the Spartan-3E FPGA.
The original Spartan-3 device requires slightly different coding because it does not include the
IDDR2 structure. Complete details are in the accompanying ZIP file (see “Design Files”).

In Verilog:

.
parameter [2:0] SWAP_MASK = 3'b010;
.
.
genvar i;
generate
for (i = 0; i <= 2; i = i + 1)
begin: loop0
IBUFDS#(.IOSTANDARD("LVDS_25"), .IFD_DELAY_VALUE("0"), .DIFF_TERM("FALSE"))
ibuf_d (.I(datain_p[i]), .IB(datain_n[i]), .O(rx_input[i]));
IDDR2 #(.DDR_ALIGNMENT("C0")) fd_ioc(.C0(clkin), .C1(notclk), .D(rx_input[i]),
 .CE(1'b1), .R(1'b0), .S(1'b0), .Q0(rx_input_reg[i+3]),
 .Q1(rx_input_reg[i]));
assign rx_input_fix[i] = rx_input_reg[i] ^ SWAP_MASK[i];
assign rx_input_fix[i+3] = rx_input_reg[i+3] ^ SWAP_MASK[i];
end
endgenerate

In VHDL:

.
constant SWAP_MASK : std_logic_vector(2 downto 0):= "010";
.
.
loop0: for i in 0 to 2 generate
ibuf_d : ibufds
generic map (IOSTANDARD => "LVDS_25", IFD_DELAY_VALUE => "0", DIFF_TERM => FALSE)
port map (i => datain_p(i), iB => datain_n(i), o => rx_input(i));
fd_d : iddr2
generic map (DDR_ALIGNMENT => "C0")
port map (c0 => clkin, c1 => notclock, d => rx_input(i), ce => '1', r => '0',
 s => '0', q0 => rx_input_reg(i+3), q1 => rx_input_reg(i));
rx_input_fix(i) <= rx_input_reg(i) xor SWAP_MASK(i);
rx_input_fix(i+3) <= rx_input_reg(i+3) xor SWAP_MASK(i);

This mechanism is easily extendable to various bit widths by changing the characters marked
in red, boldface text.

Figure 6: DDR Registered Receiver

rx_input
+
-

rx_input_fix[1]
D

rx_input_reg[1]

CLBIOB

D
rx_input_fix[0] rx_input_reg[0]

clock

P

N

P

N

P

N

N

P

N

P

N

P

X491_06_041906

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds312.pdf

6 www.xilinx.com XAPP491 (v1.0) October 4, 2006

Output DDR Example
R

Bit manipulation can be important when using DDR techniques. The DDR generate loop
example generates a bus whose low-order bits are collected on the falling edge of the clock and
whose high-order bits are collected on the following rising edge. Figure 7 is a screen shot of a
simulation run of the DDR design, showing this bit collection. This simulation assumes all
traces are correct (that is, no pin swapping has been performed), to clearly show which bit ends
up where.

Output DDR
Example

Figure 8 shows the transmitter DDR scenario where each pair of transmit data lines is
multiplexed by the ODDR2 mechanism in the Spartan-3E FPGA (FDDRRSE in the Spartan-3
FPGA). In this case, inverters are added to each line associated with the LVDS output whose
polarity is required to be inverted. Because these inverters are absorbed into the output flip-
flops during implementation as described above, they do not change the timing of the circuit.

The following code illustrates the transmitter DDR registered case for the generate loop
example. The original Spartan-3 device requires slightly different coding because it does not
include the ODDR2 structure. Complete details are in the accompanying ZIP file (see “Design
Files”).

Figure 7: Simulation of the Input DDR Case
X491_07_041906

Figure 8: Double Data Rate Registered Transmitter

N

P

N

P

N

P

X491_08_092106

+
-

D

IOBCLB

D
Tx_output_fix[0]

Tx_output_fix[1]

clock

P

N

P

N

P

N

www.BDTIC.com/XILINX

http://www.xilinx.com

Design Files

XAPP491 (v1.0) October 4, 2006 www.xilinx.com 7

R

In Verilog:

parameter [2:0] SWAP_MASK = 3'b010 ;

genvar i ;
generate
for (i = 0 ; i <= 2 ; i = i + 1)
begin : loop0
OBUFDS #(.IOSTANDARD("LVDS_25"))
obuf_d (.I(tx_output_reg[i]), .O(dataout_p[i]), .OB(dataout_n[i]));
ODDR2 #(.DDR_ALIGNMENT("NONE")) fd_ioc (.C0(clkin), .C1(notclk),
.D0(tx_output_fix[i+3]), .D1(tx_output_fix[i]), .CE(1'b1), .R(1'b0),
.S(1'b0), .Q(tx_output_reg[i])) ;
assign tx_output_fix[i] = tx_output[i] ^ SWAP_MASK[i] ;
assign tx_output_fix[i+3] = tx_output[i+3] ^ SWAP_MASK[i] ;
end
endgenerate

In VHDL:

constant SWAP_MASK : std_logic_vector(2 downto 0) := "010" ;

loop0 : for i in 0 to 2 generate
ibuf_d : obufds generic map (IOSTANDARD => "LVDS_25")
 port map (i => tx_output_reg(i), o => dataout_p(i), oB =>
dataout_n(i));
fd_d : oddr2 generic map (DDR_ALIGNMENT => "NONE")
 port map (c0 => clkin, c1 => notclock, d0 => tx_output_fix(i),
d1 => tx_output_fix(i+3), ce => '1', r => '0', s => '0', q =>
tx_output_reg(i));
tx_output_fix(i) <= tx_output(i) xor SWAP_MASK(i) ;
tx_output_fix(i+3) <= tx_output(i+3) xor SWAP_MASK(i) ;
end generate ;

This mechanism is easily extendable to various bit widths by changing the characters marked
in red, boldface text.

As mentioned, bit manipulation can be important when using DDR techniques. The DDR
generate loop example generates a bus whose low-order bits are transmitted on the falling
edge of the clock and whose high-order bits are transmitted on the following rising edge.

Design Files The design files for the various receiver and transmitter cases presented in this application note
have been written for all Spartan-3 and Spartan-3E family devices. Both Verilog and VHDL
design files are available from the Xilinx website (xapp491.zip). The enclosed readme.txt file
provides the latest details.

Conclusion With some planning and careful use of Spartan-3 Generation FPGA resources when designing
with LVDS, the complexity of PCB layout can be substantially reduced, while improving the
overall board signal integrity. This is true for the LVDS receivers and the LVDS transmitters
incorporated within the device with the exception of the input clock pin, which has to have the
correct polarity.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

10/04/06 1.0 Initial Xilinx release.

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/appnotes/xapp491.zip
http://www.xilinx.com

	Summary
	Introduction
	Absorbed Inverter Examples
	Asynchronous Inputs
	Synchronous Use of IOB Input Flip-Flops
	SDR Example
	Input DDR Example

	Output DDR Example
	Design Files
	Conclusion
	Revision History

