
Summary This application note describes the implementation of an Error Correction Control (ECC) 
module in a Virtex™-II, Virtex-II Pro, Virtex-4, or Virtex-5 device. The design detects and 
corrects all single bit errors (in a codeword consisting of either 64-bit data and 8 parity bits, or 
32-bit data and 7 parity bits), and it detects double bit errors in the data. This design utilizes 
Hamming code, a simple yet powerful method for ECC operations. As a result, this design 
offers exceptional performance and resource utilization.

Introduction Error detection and correction is found in many high-reliability and performance applications. 
For example, in enterprise data storage systems, memory caches are utilized to improve 
system reliability. The cache is typically placed inside the controller between the host interfaces 
and the disk array. A robust cache memory design often includes ECC functions to avoid single 
point of failure losses of customer data. ECC becomes an important feature for many 
communication applications, such as satellite receivers; it is more performance and cost 
efficient to correct an error rather than retransmit the data. 

The reference design (XAPP645.zip) described in this application note implements error 
detection and correction at the speed of the data read/write rate, up to 144 MHz unpipelined or 
313 MHz pipelined in a Virtex-II Pro device with a -6 speed grade. It detects double bit errors 
and corrects single bit errors anywhere within the codeword. The reference design targets 
72-bit double data rate (DDR) DIMM memory. Both 32-bit and pipelined versions are available. 
The design is easily modified to fit other narrower data widths.

Hamming Code The ECC functions described in this application note are made possible by Hamming code, a 
relatively simple yet powerful ECC code. It involves transmitting data with multiple check bits 
(parity) and decoding the associated check bits when receiving data to detect errors. 

The check bits are parallel parity bits generated from XORing certain bits in the original data 
word. If bit error(s) are introduced in the codeword, several check bits show parity errors after 
decoding the retrieved codeword. The combination of these check bit errors display the nature 
of the error. In addition, the position of any single bit error is identified from the check bits.

The Hamming codeword is a concatenation of the original data and the check bits (parity). It is 
described by an ordered set (d + p,d) where d is the width of the data and p is the width of the 
parity. The parity matrix [P] can be expressed as:

[P] = [D] • [G]

where [D] is the data matrix and [G] is the generator matrix. The [G] matrix consists of an 
identity matrix [I] and a creation matrix [C]. 

[G] = [I:C]
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For example, the (7,4) Hamming code is:

The minimum number of check bits required for a single bit error correction is derived from the 
following equation:

D + P + 1 ≤ 2P

This reference design uses the (72,64) Hamming code. In other words, the Hamming codeword 
width is 72 bits, comprised of 64 data bits and eight check bits. The minimum number of check 
bits needed for correcting a single bit error in a 64-bit word is seven. The extra check bit 
expands the function to detect double bit errors as well.

To detect errors, the codeword vector multiplies with the transpose of the generator matrix to 
produce an 8-bit vector [S], known as the syndrome vector.

[S] = [D,P] • [G′]

If all of the elements of the syndrome vector are zeros, no error is reported. Any other non-zero 
result represents the bit error type and provides the location of any single bit errors. It is then 
used to correct the original incoming data. 

To visualize Hamming code, consider the tables shown in the following figures. Each data bit 
position as well as the check bits are mapped in a syndrome table as shown in Figure 1. The 
location of each table cell is given by the row and column position. For example, data bit 60 is 
at column 100 and row 1000, or position 1000100. By calculating the parity of each position bit, 
either odd or even, seven check bits can be derived. The check bit equation is composed of 
XOR operators, denoted as a ⊕. For example, the logical equation for check bit 1(CB1):

CB1 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D8 ⊕ D10 ⊕ D11 ⊕ D13 ⊕ D15 ⊕ D17 ⊕ D19 ⊕ D21 ⊕
D23 ⊕ D25 ⊕ D26 ⊕ D28 ⊕ D30 ⊕ D32 ⊕ D34 ⊕ D36 ⊕ D38 ⊕ D40 ⊕ D42 ⊕ D44
⊕ D46 ⊕ D48 ⊕ D50 ⊕ D52 ⊕ D54 ⊕ D56 ⊕ D57 ⊕ D59 ⊕ D61 ⊕ D63

Essentially, all data bits with the table cell position of 1 as the least significant bit are chosen to 
create CB1 (see Figure 1). CB2 involves the second to the least significant bit and so forth.

Figure 1:  Syndrome Table
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When there is no bit error, as shown in Figure 2, the check bits match with the calculated check 
bits of the data. As a result, all syndrome bits are zero, pointing to the no error position.

If a single bit error occurs, as shown in Figure 3, several syndromes have odd parity (resulting 
in a logic one) where the column and row position can be determined. If D28 is incorrect, then 
CB1, CB2, and CB6 have parity errors. As a result, D28 is identified as the error bit in the 
syndrome table.

If a double bit error occurs, as shown in Figure 4, the error bit positions are either not pinpointed 
or pinpointed incorrectly. For example, if a double bit error occurred at D28 and D22, the 
resulting syndrome points to column 111 and row 0111. However, it is still possible to detect a 
double bit error event by adding one additional check bit (CB8) that covers every data bit. If CB1 
through CB7 results in a non-zero value while CB8 returns a zero, then a double bit error has 
occurred.

Figure 2:  No Bit Error Detection

Figure 3:  Single Bit Error Detection
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Design 
Overview

Figure 5 shows a block diagram using a DDR memory controller with ECC functions. The DDR 
DIMM in this example is a Micron MT18VDDT6472G, an ECC configuration module. The 
reference design has a parity encoder and parity decoder unit. The encoder implements the 
function of the generator matrix, while the decoder is responsible for error detection and 
correction. Additionally, the diagnostic functions are supported. These functions are described 
in the following sections. 

Figure 4:  Double Bit Error Detection
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Figure 5:  ECC in a Memory System
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Parity Encoder The encoder consists of XORs and a bit-error generator implemented in look-up tables (LUTs). 
An optional pipeline stage can be added to improve performance further. Figure 6 shows a 
block diagram of the parity encoder.

The check bits are written in the memory along with the associated 64-bit data. During a 
memory read, the data and the check bits are read simultaneously. Any error(s) introduced 
during the read/write access between the FPGA and memory are detected. 

The parity bits are generated based on an unmodified Hamming code. Table 1 shows the 
participating bits in the generation of the (72,64) codeword. Table 2 shows the participating bits 
in the generation of the (39,32) codeword. 

Figure 6:  Parity Encoder Block Diagram
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Table  1:  64-Bit Hamming Code 

Participating 
Data Bits

Generated Check Bits

CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8

0 √ √ √

1 √ √ √

2 √ √ √

3 √ √ √ √

4 √ √ √

5 √ √ √

6 √ √ √ √

7 √ √ √

8 √ √ √ √

9 √ √ √ √

10 √ √ √ √ √

11 √ √ √

12 √ √ √

13 √ √ √ √

14 √ √ √

15 √ √ √ √

16 √ √ √ √

17 √ √ √ √ √

18 √ √ √

19 √ √ √ √

20 √ √ √ √

21 √ √ √ √ √

22 √ √ √ √

23 √ √ √ √ √

24 √ √ √ √ √

25 √ √ √ √ √ √

26 √ √ √

27 √ √ √

28 √ √ √ √

29 √ √ √

30 √ √ √ √

31 √ √ √ √

32 √ √ √ √ √

33 √ √ √

34 √ √ √ √
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35 √ √ √ √

36 √ √ √ √ √

37 √ √ √ √

38 √ √ √ √ √

39 √ √ √ √ √

40 √ √ √ √ √ √

41 √ √ √

42 √ √ √ √

43 √ √ √ √

44 √ √ √ √ √

45 √ √ √ √

46 √ √ √ √ √

47 √ √ √ √ √

48 √ √ √ √ √ √

49 √ √ √ √

50 √ √ √ √ √

51 √ √ √ √ √

52 √ √ √ √ √ √

53 √ √ √ √ √

54 √ √ √ √ √ √

55 √ √ √ √ √ √

56 √ √ √ √ √ √ √

57 √ √ √

58 √ √ √

59 √ √ √ √

60 √ √ √

61 √ √ √ √

62 √ √ √ √

63 √ √ √ √ √

Table  1:  64-Bit Hamming Code  (Continued)

Participating 
Data Bits

Generated Check Bits

CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8
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Table  2:  32-Bit Hamming Code 

Participating 
Data Bits

Generated Check Bits

CB0 CB1 CB2 CB3 CB4 CB5 CB6

0 √ √ √

1 √ √ √

2 √ √ √

3 √ √ √ √

4 √ √ √

5 √ √ √

6 √ √ √ √

7 √ √ √

8 √ √ √ √

9 √ √ √ √

10 √ √ √ √ √

11 √ √ √

12 √ √ √

13 √ √ √ √

14 √ √ √

15 √ √ √ √

16 √ √ √ √

17 √ √ √ √ √

18 √ √ √

19 √ √ √ √

20 √ √ √ √

21 √ √ √ √ √

22 √ √ √ √

23 √ √ √ √ √

24 √ √ √ √ √

25 √ √ √ √ √ √

26 √ √ √

27 √ √ √

28 √ √ √ √

29 √ √ √

30 √ √ √ √

31 √ √ √ √
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Parity Decoder The decoder unit shown in Figure 7 consists of three blocks:

• Syndrome generation
• Syndrome LUT and mask generation
• Data correction

Syndrome Generation
The incoming 64-bit data along with the 8-bit parity are XOR'd together to generate the 8-bit 
syndrome (S1 through S8). This is very similar to check bit generation, for example:

S1 = DECIN0 ⊕ DECIN1 ⊕ DECIN3 ⊕ DECIN4 ⊕ DECIN6 ⊕ DECIN8 ⊕ DECIN10 ⊕
DECIN11 ⊕ DECIN13 ⊕ DECIN15 ⊕ DECIN17 ⊕ DECIN19 ⊕ DECIN21 ⊕ DECIN23 ⊕
DECIN25 ⊕ DECIN26 ⊕ DECIN28 ⊕ DECIN30 ⊕ DECIN32 ⊕ DECIN34 ⊕ DECIN36 ⊕
DECIN38 ⊕ DECIN40 ⊕ DECIN42 ⊕ DECIN44 ⊕ DECIN46 ⊕ DECIN48 ⊕ DECIN50 ⊕
DECIN52 ⊕ DECIN54 ⊕ DECIN56 ⊕ DECIN57 ⊕ DECIN59 ⊕ DECIN61 ⊕ DECIN63
⊕ PARITY_IN(1)

Then the next stage uses the syndrome to look for the error type and the error location. An 
optional pipeline stage can be added here to improve performance further.

Syndrome LUT and Mask Generation
In order to correct a single bit error, a 64-bit correction mask is created. Each bit of this mask is 
generated based on the result of the syndrome from previous stage. When no error is detected, 
all bits of the mask become zero. When a single bit error is detected, the corresponding mask 
masks out the rest of the bits except for the error bit. The subsequent stage then XORs the 
mask with the original data. As a result, the error bit is reversed (or corrected) to the correct 
state. If a double bit error is detected, all mask bits become zero. The error type and 
corresponding correction mask are created during the same clock cycle.

Data Correction
In the data correction stage, the mask is XOR'd together with the original incoming data to flip 
the error bit to the correct state, if needed. When there are no bit errors or double bit errors, all 
the mask bits are zeros. As a result, the incoming data goes through the ECC unit without 
changing the original data.

Figure 7:  ECC Functional Block Diagram
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Error 
Diagnostics

In addition to displaying the error type, the reference design also supports diagnostic mode. 
Single, multiple, and triple bit errors can be introduced to the output codeword. 

When the ERROR port is 00, no single, two, or greater bit error is detected. In other words, the 
examined data has no parity error. When the ERROR port is 01, it indicates single bit error 
occurred within the 72-bit codeword. In addition, the error is corrected, and the data is error 
free. When the ERROR port is 10, a two bit error has occurred within the codeword. In this 
case, no error correction is possible in this case. When the ERROR port is 11, errors beyond 
the detection capability can occur within the codeword and no error correction is possible. This 
is an invalid error type.

A deliberate bit error can be injected in the codeword at the output of the encoder as a way to 
test the system. Force_error provides several types of error modes.

Force_error = 00

This is the normal operation mode. No bit error has been imposed on the output of the encoder.

Force_error = 01

Single bit error mode. One bit is reversed (0 to 1 or 1 to 0) in the codeword at every rising edge 
of the clock. The single bit error follows the sequence moving from bit 0 of the codeword to bit 
72. The sequence is repeated as long as this error mode is active.

Force_error = 10

Termed double bit error mode. Two consecutive bits are reversed (0 becomes 1 or 1 becomes 
0) in the codeword at every rising edge of the clock. The double bit error follows the sequence 
moving from bit (0,1) of the codeword to bit (71, 72). The sequence repeats as long as this error 
mode is active.

Force_error = 11

Termed triple-error mode. Three-bits are reversed (0 becomes 1 or 1 becomes 0) in a codeword 
generated at every rising edge of the clock. The double bit error follows the sequence moving 
from bit (0,1, 2) of the codeword together to bit (70, 71, 72) sequentially. The sequence repeats 
as long as this error mode is active.

Utilization and 
Performance

The reference design utilizes a minimum amount of resources and has high performance. 
Table 3 provides a performance and utilization summary. The design was synthesized using 
the Xilinx Synthesis Tool (XST). The performance summary is based on ISE 8.2i speed 
specifications and reflects the 64-bit version ECC reference design only.
 

Table  3:  Performance Utilization Summary

Device Utilizaton(1)

Performance

Unpipelined 1-Stage Pipeline

XC2VP4 -6 16% 144 MHz 313 MHz

XC2VP7 -6 10% 136 MHz 298 MHz

XC2VP20 -6 or 
XC2VPX20 -6

5% 132 MHz 232 MHz

XC2VP50 -6 2% 127 MHz 176 MHz

XC4VLX15 -11 9% 197 Mhz 295 Mhz

XC4VFX20 -11 7% 204 Mhz 256 Mhz

XC4VFX60 -11 3% 158 Mhz 253 Mhz
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Latency Although not required, the I/Os of the module are registered. For the encoder, the latency from 
the time the input data is presented at ENCIN to encoded data becomes available at ENCOUT 
is two clock cycles unpipelined or three clock cycles pipelined. For the decoder, the latency 
from the time the input data is presented to DECIN to the processed data becomes available at 
DECOUT is two clock cycles unpipelined or three clock cycles pipelined. The status signal 
ERROR is synchronous to DECOUT. Figure 8 illustrates the timing latencies.

Latency Description
ENx = Write data before being encoded.

cENx = Write data after the encoder. Check bits are available for write.

DEx = Read data before the ECC unit.

cDE = Corrected read data after the ECC unit.

Ex = Error status generated from the ECC unit.

Pin Descriptions Table 4 lists all of the user interface pins of the ECC module rising clock edge.

XC4VSX35 -11 4% 172 Mhz 293 Mhz

XC5VLX30 -2 4% 251 MHz 302 MHz

XC5VLX110 -2 1% 239 MHz 301 MHz

Table  3:  Performance Utilization Summary (Continued)

Device Utilizaton(1)

Performance

Unpipelined 1-Stage Pipeline

Figure 8:  Timing Diagram
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Table  4:  ECC Module Pin Description

Pin Name In/Out
Width 
(64-bit)

Width
(32-bit) Description

CLK In Clock input.

RESET In Active Low reset.

ENCIN In 63:0 31:0 Original data input to the encoder.

ENCOUT Out 63:0 31:0 Registered original data through the 
encoder.
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Reference 
Design Files

The VHDL and Verilog reference design files are posted on the Xilinx website at:

http://www.xilinx.com/bvdocs/appnotes/xapp645.zip

Conclusion This application note shows a simple method of encoding and looking up Hamming code in 
Virtex-II, Virtex-II Pro, and Virtex-4 devices.

Revision 
History

The following table shows the revision history for this document.  

PARITY_OUT Out 7:0 6:0
Parity bits generated from the encoder based 
on the data (encin) registered at the same 
clock edge.

DECIN In 63:0 31:0 Incoming data to the decoder.

DECOUT Out 63:0 31:0 Corrected data from DECIN.

PARITY_IN In 7:0 6:0
Parity bits associated with the incoming data 
(DECIN) registered at the same rising clock 
edge

FORCE_ERROR In 1:0 1:0

Introduce bit error in the encoded dataword 
for test purpose. 
00 – Normal operation
01 – Inject single bit error
10 – Inject double bit error
11 – Inject triple bit error

ERROR Out 1:0 1:0

Error status 
00 – No error 
01 – Single bit error detected and corrected 
10 – Double bit error detected. No correction 
11 – Invalid bit error detected

Table  4:  ECC Module Pin Description (Continued)

Pin Name In/Out
Width 
(64-bit)

Width
(32-bit) Description

Date Version Revision

03/03/03 1.0 Initial Xilinx release.

09/17/03 1.1 Updated with Error Detection and Correction (EDC) functions for 
32-bit data. Performance now reflects Speed Files version 1.81.

02/03/04 1.2 Expanded document to include pipelined applications.

09/01/04 2.0 Updated to include Virtex-4 FPGAs.

07/20/05 2.1 Updated Performance Utilization Summary Table (Table 3).

08/09/06 2.2 Updated Utilization and Performance section and Performance 
Utilization Summary Table (Table 3).
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