
Summary This application note describes the implementation of an Error Correction Control (ECC)
module in a Virtex™-II, Virtex-II Pro, Virtex-4, or Virtex-5 device. The design detects and
corrects all single bit errors (in a codeword consisting of either 64-bit data and 8 parity bits, or
32-bit data and 7 parity bits), and it detects double bit errors in the data. This design utilizes
Hamming code, a simple yet powerful method for ECC operations. As a result, this design
offers exceptional performance and resource utilization.

Introduction Error detection and correction is found in many high-reliability and performance applications.
For example, in enterprise data storage systems, memory caches are utilized to improve
system reliability. The cache is typically placed inside the controller between the host interfaces
and the disk array. A robust cache memory design often includes ECC functions to avoid single
point of failure losses of customer data. ECC becomes an important feature for many
communication applications, such as satellite receivers; it is more performance and cost
efficient to correct an error rather than retransmit the data.

The reference design (XAPP645.zip) described in this application note implements error
detection and correction at the speed of the data read/write rate, up to 144 MHz unpipelined or
313 MHz pipelined in a Virtex-II Pro device with a -6 speed grade. It detects double bit errors
and corrects single bit errors anywhere within the codeword. The reference design targets
72-bit double data rate (DDR) DIMM memory. Both 32-bit and pipelined versions are available.
The design is easily modified to fit other narrower data widths.

Hamming Code The ECC functions described in this application note are made possible by Hamming code, a
relatively simple yet powerful ECC code. It involves transmitting data with multiple check bits
(parity) and decoding the associated check bits when receiving data to detect errors.

The check bits are parallel parity bits generated from XORing certain bits in the original data
word. If bit error(s) are introduced in the codeword, several check bits show parity errors after
decoding the retrieved codeword. The combination of these check bit errors display the nature
of the error. In addition, the position of any single bit error is identified from the check bits.

The Hamming codeword is a concatenation of the original data and the check bits (parity). It is
described by an ordered set (d + p,d) where d is the width of the data and p is the width of the
parity. The parity matrix [P] can be expressed as:

[P] = [D] • [G]

where [D] is the data matrix and [G] is the generator matrix. The [G] matrix consists of an
identity matrix [I] and a creation matrix [C].

[G] = [I:C]

Application Note: Virtex-II Pro, Virtex-4, and Virtex-5 Families

XAPP645 (v2.2) August 9, 2006

Single Error Correction and
Double Error Detection
Author: Simon Tam

R

XAPP645 (v2.2) August 9, 2006 www.xilinx.com 1

© 2003-2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All
other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/bvdocs/appnotes/xapp645.zip

Single Error Correction and Double Error Detection
R

For example, the (7,4) Hamming code is:

The minimum number of check bits required for a single bit error correction is derived from the
following equation:

D + P + 1 ≤ 2P

This reference design uses the (72,64) Hamming code. In other words, the Hamming codeword
width is 72 bits, comprised of 64 data bits and eight check bits. The minimum number of check
bits needed for correcting a single bit error in a 64-bit word is seven. The extra check bit
expands the function to detect double bit errors as well.

To detect errors, the codeword vector multiplies with the transpose of the generator matrix to
produce an 8-bit vector [S], known as the syndrome vector.

[S] = [D,P] • [G′]

If all of the elements of the syndrome vector are zeros, no error is reported. Any other non-zero
result represents the bit error type and provides the location of any single bit errors. It is then
used to correct the original incoming data.

To visualize Hamming code, consider the tables shown in the following figures. Each data bit
position as well as the check bits are mapped in a syndrome table as shown in Figure 1. The
location of each table cell is given by the row and column position. For example, data bit 60 is
at column 100 and row 1000, or position 1000100. By calculating the parity of each position bit,
either odd or even, seven check bits can be derived. The check bit equation is composed of
XOR operators, denoted as a ⊕. For example, the logical equation for check bit 1(CB1):

CB1 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D8 ⊕ D10 ⊕ D11 ⊕ D13 ⊕ D15 ⊕ D17 ⊕ D19 ⊕ D21 ⊕
D23 ⊕ D25 ⊕ D26 ⊕ D28 ⊕ D30 ⊕ D32 ⊕ D34 ⊕ D36 ⊕ D38 ⊕ D40 ⊕ D42 ⊕ D44
⊕ D46 ⊕ D48 ⊕ D50 ⊕ D52 ⊕ D54 ⊕ D56 ⊕ D57 ⊕ D59 ⊕ D61 ⊕ D63

Essentially, all data bits with the table cell position of 1 as the least significant bit are chosen to
create CB1 (see Figure 1). CB2 involves the second to the least significant bit and so forth.

Figure 1: Syndrome Table

G

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 1
0 1 1
1 0 1
1 1 0

=

x645_01_022103

000001010011100101110111

0000

0001

0010

0011

0100

0101

0110

0111

1000CB7D57D58D59D60D61D62D63

CB1 No
ErrorCB2D0CB3D1D2D3

CB4D4D5D6D7D8D9D10

CB5D11D12D13D14D15D16D17

D18D19D20D21D22D23D24D25

CB6D26D27D28D29D30D31D32

D33D34D35D36D37D38D39D40

D41D42D43D44D45D46D47D48

D49D50D51D52D53D54D55D56
2 www.xilinx.com XAPP645 (v2.2) August 9, 2006www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

When there is no bit error, as shown in Figure 2, the check bits match with the calculated check
bits of the data. As a result, all syndrome bits are zero, pointing to the no error position.

If a single bit error occurs, as shown in Figure 3, several syndromes have odd parity (resulting
in a logic one) where the column and row position can be determined. If D28 is incorrect, then
CB1, CB2, and CB6 have parity errors. As a result, D28 is identified as the error bit in the
syndrome table.

If a double bit error occurs, as shown in Figure 4, the error bit positions are either not pinpointed
or pinpointed incorrectly. For example, if a double bit error occurred at D28 and D22, the
resulting syndrome points to column 111 and row 0111. However, it is still possible to detect a
double bit error event by adding one additional check bit (CB8) that covers every data bit. If CB1
through CB7 results in a non-zero value while CB8 returns a zero, then a double bit error has
occurred.

Figure 2: No Bit Error Detection

Figure 3: Single Bit Error Detection

x645_01_022003

000001010011100101110111

0000

0001

0010

0011

0100

0101

0110

0111

1000CB7D57D58D59D60D61D62D63

CB1 No
ErrorCB2D0CB3D1D2D3

CB4D4D5D6D7D8D9D10

CB5D11D12D13D14D15D16D17

D18D19D20D21D22D23D24D25

CB6D26D27D28D29D30D31D32

D33D34D35D36D37D38D39D40

D41D42D43D44D45D46D47D48

D49D50D51D52D53D54D55D56

x645 02 022003

000001010011100101110111

0000

0001

0010

0011

0100

0101

0110

0111

1000CB7D57D58D59D60D61D62D63

CB1 No
ErrorCB2D0CB3D1D2D3

CB4D4D5D6D7D8D9D10

CB5D11D12D13D14D15D16D17

D18D19D20D21D22D23D24D25

CB6D26D27D28D29D30D31D32

D33D34D35D36D37D38D39D40

D41D42D43D44D45D46D47D48

D49D50D51D52D53D54D55D56
XAPP645 (v2.2) August 9, 2006 www.xilinx.com 3www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Design
Overview

Figure 5 shows a block diagram using a DDR memory controller with ECC functions. The DDR
DIMM in this example is a Micron MT18VDDT6472G, an ECC configuration module. The
reference design has a parity encoder and parity decoder unit. The encoder implements the
function of the generator matrix, while the decoder is responsible for error detection and
correction. Additionally, the diagnostic functions are supported. These functions are described
in the following sections.

Figure 4: Double Bit Error Detection
x645_03_022003

000001010011100101110111

0000

0001

0010

0011

0100

0101

0110

0111

1000CB7D57D58D59D60D61D62D63

CB1 No
ErrorCB2D0CB3D1D2D3

CB4D4D5D6D7D8D9D10

CB5D11D12D13D14D15D16D17

D18D19D20D21D22D23D24D25

CB6D26D27D28D29D30D31D32

D33D34D35D36D37D38D39D40

D41D42D43D44D45D46D47D48

D49D50D51D52D53D54D55D56

Figure 5: ECC in a Memory System

Parity
Encoder

M
em

ory C
ontroller

P
ow

erP
C

 P
rocessor

72-B
it D

IM
MError

Detection
and

Correction

FPGA

64

2

64

2

64

64

8

8

PARITY_OUT

PARITY_IN

ENCOUT

Data

Strobe

ENCIN

DECOUT

Address

Control

FORCE_ERROR

DECIN

ERROR

72

x645_04_071405
4 www.xilinx.com XAPP645 (v2.2) August 9, 2006www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Parity Encoder The encoder consists of XORs and a bit-error generator implemented in look-up tables (LUTs).
An optional pipeline stage can be added to improve performance further. Figure 6 shows a
block diagram of the parity encoder.

The check bits are written in the memory along with the associated 64-bit data. During a
memory read, the data and the check bits are read simultaneously. Any error(s) introduced
during the read/write access between the FPGA and memory are detected.

The parity bits are generated based on an unmodified Hamming code. Table 1 shows the
participating bits in the generation of the (72,64) codeword. Table 2 shows the participating bits
in the generation of the (39,32) codeword.

Figure 6: Parity Encoder Block Diagram

x645_05_071405

64

64

8

ENCIN

CB1

CB2

CB3

CB4

CB5

CB6

CB7

CB8

B
it-E

rror
G

enerator

FORCE ERROR

DOUBLE ERROR

TRIPLE ERROR
'0'

SINGLE ERROR

PARITY_OUT

ENCOUT

Optional Pipelined Register

Exclusive-OR functions in FPGA LUTs
XAPP645 (v2.2) August 9, 2006 www.xilinx.com 5www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Table 1: 64-Bit Hamming Code

Participating
Data Bits

Generated Check Bits

CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8

0 √ √ √

1 √ √ √

2 √ √ √

3 √ √ √ √

4 √ √ √

5 √ √ √

6 √ √ √ √

7 √ √ √

8 √ √ √ √

9 √ √ √ √

10 √ √ √ √ √

11 √ √ √

12 √ √ √

13 √ √ √ √

14 √ √ √

15 √ √ √ √

16 √ √ √ √

17 √ √ √ √ √

18 √ √ √

19 √ √ √ √

20 √ √ √ √

21 √ √ √ √ √

22 √ √ √ √

23 √ √ √ √ √

24 √ √ √ √ √

25 √ √ √ √ √ √

26 √ √ √

27 √ √ √

28 √ √ √ √

29 √ √ √

30 √ √ √ √

31 √ √ √ √

32 √ √ √ √ √

33 √ √ √

34 √ √ √ √
6 www.xilinx.com XAPP645 (v2.2) August 9, 2006www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

35 √ √ √ √

36 √ √ √ √ √

37 √ √ √ √

38 √ √ √ √ √

39 √ √ √ √ √

40 √ √ √ √ √ √

41 √ √ √

42 √ √ √ √

43 √ √ √ √

44 √ √ √ √ √

45 √ √ √ √

46 √ √ √ √ √

47 √ √ √ √ √

48 √ √ √ √ √ √

49 √ √ √ √

50 √ √ √ √ √

51 √ √ √ √ √

52 √ √ √ √ √ √

53 √ √ √ √ √

54 √ √ √ √ √ √

55 √ √ √ √ √ √

56 √ √ √ √ √ √ √

57 √ √ √

58 √ √ √

59 √ √ √ √

60 √ √ √

61 √ √ √ √

62 √ √ √ √

63 √ √ √ √ √

Table 1: 64-Bit Hamming Code (Continued)

Participating
Data Bits

Generated Check Bits

CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8
XAPP645 (v2.2) August 9, 2006 www.xilinx.com 7www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Table 2: 32-Bit Hamming Code

Participating
Data Bits

Generated Check Bits

CB0 CB1 CB2 CB3 CB4 CB5 CB6

0 √ √ √

1 √ √ √

2 √ √ √

3 √ √ √ √

4 √ √ √

5 √ √ √

6 √ √ √ √

7 √ √ √

8 √ √ √ √

9 √ √ √ √

10 √ √ √ √ √

11 √ √ √

12 √ √ √

13 √ √ √ √

14 √ √ √

15 √ √ √ √

16 √ √ √ √

17 √ √ √ √ √

18 √ √ √

19 √ √ √ √

20 √ √ √ √

21 √ √ √ √ √

22 √ √ √ √

23 √ √ √ √ √

24 √ √ √ √ √

25 √ √ √ √ √ √

26 √ √ √

27 √ √ √

28 √ √ √ √

29 √ √ √

30 √ √ √ √

31 √ √ √ √
8 www.xilinx.com XAPP645 (v2.2) August 9, 2006www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Parity Decoder The decoder unit shown in Figure 7 consists of three blocks:

• Syndrome generation
• Syndrome LUT and mask generation
• Data correction

Syndrome Generation
The incoming 64-bit data along with the 8-bit parity are XOR'd together to generate the 8-bit
syndrome (S1 through S8). This is very similar to check bit generation, for example:

S1 = DECIN0 ⊕ DECIN1 ⊕ DECIN3 ⊕ DECIN4 ⊕ DECIN6 ⊕ DECIN8 ⊕ DECIN10 ⊕
DECIN11 ⊕ DECIN13 ⊕ DECIN15 ⊕ DECIN17 ⊕ DECIN19 ⊕ DECIN21 ⊕ DECIN23 ⊕
DECIN25 ⊕ DECIN26 ⊕ DECIN28 ⊕ DECIN30 ⊕ DECIN32 ⊕ DECIN34 ⊕ DECIN36 ⊕
DECIN38 ⊕ DECIN40 ⊕ DECIN42 ⊕ DECIN44 ⊕ DECIN46 ⊕ DECIN48 ⊕ DECIN50 ⊕
DECIN52 ⊕ DECIN54 ⊕ DECIN56 ⊕ DECIN57 ⊕ DECIN59 ⊕ DECIN61 ⊕ DECIN63
⊕ PARITY_IN(1)

Then the next stage uses the syndrome to look for the error type and the error location. An
optional pipeline stage can be added here to improve performance further.

Syndrome LUT and Mask Generation
In order to correct a single bit error, a 64-bit correction mask is created. Each bit of this mask is
generated based on the result of the syndrome from previous stage. When no error is detected,
all bits of the mask become zero. When a single bit error is detected, the corresponding mask
masks out the rest of the bits except for the error bit. The subsequent stage then XORs the
mask with the original data. As a result, the error bit is reversed (or corrected) to the correct
state. If a double bit error is detected, all mask bits become zero. The error type and
corresponding correction mask are created during the same clock cycle.

Data Correction
In the data correction stage, the mask is XOR'd together with the original incoming data to flip
the error bit to the correct state, if needed. When there are no bit errors or double bit errors, all
the mask bits are zeros. As a result, the incoming data goes through the ECC unit without
changing the original data.

Figure 7: ECC Functional Block Diagram

x645_06_071405

64

8

7:0

DECIN[63:0]

DOA

S
yndrom

e

DECOUT

ERROR

PARITY_IN

Syndrome Generator Lookup and Mask Generator Data Correction

LU
T

LU
T

LU
T

LU
T

LU
T

LU
T

MASK(0)

MASK(1)

MASK(2)

MASK(3)

MASK(63)

64

2

Optional pipelined register

Exclusive-OR functions in FPGA LUTs
XAPP645 (v2.2) August 9, 2006 www.xilinx.com 9www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Error
Diagnostics

In addition to displaying the error type, the reference design also supports diagnostic mode.
Single, multiple, and triple bit errors can be introduced to the output codeword.

When the ERROR port is 00, no single, two, or greater bit error is detected. In other words, the
examined data has no parity error. When the ERROR port is 01, it indicates single bit error
occurred within the 72-bit codeword. In addition, the error is corrected, and the data is error
free. When the ERROR port is 10, a two bit error has occurred within the codeword. In this
case, no error correction is possible in this case. When the ERROR port is 11, errors beyond
the detection capability can occur within the codeword and no error correction is possible. This
is an invalid error type.

A deliberate bit error can be injected in the codeword at the output of the encoder as a way to
test the system. Force_error provides several types of error modes.

Force_error = 00

This is the normal operation mode. No bit error has been imposed on the output of the encoder.

Force_error = 01

Single bit error mode. One bit is reversed (0 to 1 or 1 to 0) in the codeword at every rising edge
of the clock. The single bit error follows the sequence moving from bit 0 of the codeword to bit
72. The sequence is repeated as long as this error mode is active.

Force_error = 10

Termed double bit error mode. Two consecutive bits are reversed (0 becomes 1 or 1 becomes
0) in the codeword at every rising edge of the clock. The double bit error follows the sequence
moving from bit (0,1) of the codeword to bit (71, 72). The sequence repeats as long as this error
mode is active.

Force_error = 11

Termed triple-error mode. Three-bits are reversed (0 becomes 1 or 1 becomes 0) in a codeword
generated at every rising edge of the clock. The double bit error follows the sequence moving
from bit (0,1, 2) of the codeword together to bit (70, 71, 72) sequentially. The sequence repeats
as long as this error mode is active.

Utilization and
Performance

The reference design utilizes a minimum amount of resources and has high performance.
Table 3 provides a performance and utilization summary. The design was synthesized using
the Xilinx Synthesis Tool (XST). The performance summary is based on ISE 8.2i speed
specifications and reflects the 64-bit version ECC reference design only.

Table 3: Performance Utilization Summary

Device Utilizaton(1)

Performance

Unpipelined 1-Stage Pipeline

XC2VP4 -6 16% 144 MHz 313 MHz

XC2VP7 -6 10% 136 MHz 298 MHz

XC2VP20 -6 or
XC2VPX20 -6

5% 132 MHz 232 MHz

XC2VP50 -6 2% 127 MHz 176 MHz

XC4VLX15 -11 9% 197 Mhz 295 Mhz

XC4VFX20 -11 7% 204 Mhz 256 Mhz

XC4VFX60 -11 3% 158 Mhz 253 Mhz
10 www.xilinx.com XAPP645 (v2.2) August 9, 2006www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Latency Although not required, the I/Os of the module are registered. For the encoder, the latency from
the time the input data is presented at ENCIN to encoded data becomes available at ENCOUT
is two clock cycles unpipelined or three clock cycles pipelined. For the decoder, the latency
from the time the input data is presented to DECIN to the processed data becomes available at
DECOUT is two clock cycles unpipelined or three clock cycles pipelined. The status signal
ERROR is synchronous to DECOUT. Figure 8 illustrates the timing latencies.

Latency Description
ENx = Write data before being encoded.

cENx = Write data after the encoder. Check bits are available for write.

DEx = Read data before the ECC unit.

cDE = Corrected read data after the ECC unit.

Ex = Error status generated from the ECC unit.

Pin Descriptions Table 4 lists all of the user interface pins of the ECC module rising clock edge.

XC4VSX35 -11 4% 172 Mhz 293 Mhz

XC5VLX30 -2 4% 251 MHz 302 MHz

XC5VLX110 -2 1% 239 MHz 301 MHz

Table 3: Performance Utilization Summary (Continued)

Device Utilizaton(1)

Performance

Unpipelined 1-Stage Pipeline

Figure 8: Timing Diagram

DE1 DE2 DE3 DE4 DE5 DE6

cDE1 cDE2 cDE3 cDE4 cDE5 cDE6

E1 E2 E3 E4 E5 E6

CLK

DECIN

DECOUTunpipelined

ERRORunpipelined

EN1 EN2 EN3 EN4 D5 D6

cEN1 cEN2 cEN3 cEN4 cEN5 cD6

ENCIN

ENCOUTunpipelined

cEN1 cEN2 cEN3 cEN4 cEN5 cD6ENCOUTpipelined

x645_07_090104

cDE1 cDE2 cDE3 cDE4 cDE5 cDE6

E1 E2 E3 E4 E5 E6

DECOUTpipelined

ERRORpipelined

Table 4: ECC Module Pin Description

Pin Name In/Out
Width
(64-bit)

Width
(32-bit) Description

CLK In Clock input.

RESET In Active Low reset.

ENCIN In 63:0 31:0 Original data input to the encoder.

ENCOUT Out 63:0 31:0 Registered original data through the
encoder.
XAPP645 (v2.2) August 9, 2006 www.xilinx.com 11www.BDTIC.com/XILINX

http://www.xilinx.com

Single Error Correction and Double Error Detection
R

Reference
Design Files

The VHDL and Verilog reference design files are posted on the Xilinx website at:

http://www.xilinx.com/bvdocs/appnotes/xapp645.zip

Conclusion This application note shows a simple method of encoding and looking up Hamming code in
Virtex-II, Virtex-II Pro, and Virtex-4 devices.

Revision
History

The following table shows the revision history for this document.

PARITY_OUT Out 7:0 6:0
Parity bits generated from the encoder based
on the data (encin) registered at the same
clock edge.

DECIN In 63:0 31:0 Incoming data to the decoder.

DECOUT Out 63:0 31:0 Corrected data from DECIN.

PARITY_IN In 7:0 6:0
Parity bits associated with the incoming data
(DECIN) registered at the same rising clock
edge

FORCE_ERROR In 1:0 1:0

Introduce bit error in the encoded dataword
for test purpose.
00 – Normal operation
01 – Inject single bit error
10 – Inject double bit error
11 – Inject triple bit error

ERROR Out 1:0 1:0

Error status
00 – No error
01 – Single bit error detected and corrected
10 – Double bit error detected. No correction
11 – Invalid bit error detected

Table 4: ECC Module Pin Description (Continued)

Pin Name In/Out
Width
(64-bit)

Width
(32-bit) Description

Date Version Revision

03/03/03 1.0 Initial Xilinx release.

09/17/03 1.1 Updated with Error Detection and Correction (EDC) functions for
32-bit data. Performance now reflects Speed Files version 1.81.

02/03/04 1.2 Expanded document to include pipelined applications.

09/01/04 2.0 Updated to include Virtex-4 FPGAs.

07/20/05 2.1 Updated Performance Utilization Summary Table (Table 3).

08/09/06 2.2 Updated Utilization and Performance section and Performance
Utilization Summary Table (Table 3).
12 www.xilinx.com XAPP645 (v2.2) August 9, 2006www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp645.zip

	Summary
	Introduction
	Hamming Code
	Design Overview
	Parity Encoder
	Parity Decoder
	Syndrome Generation
	Syndrome LUT and Mask Generation
	Data Correction

	Error Diagnostics
	Force_error = 00
	Force_error = 01
	Force_error = 10
	Force_error = 11

	Utilization and Performance
	Latency
	Latency Description

	Pin Descriptions
	Reference Design Files
	Conclusion
	Revision History

