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Summary A Redundant Array of Independent Disks (RAID) array is a hard-disk drive (HDD) array where 
part of the physical storage capacity stores redundant information. Data is regenerated from 
the physical storage if one or more of the disks in the array (including a single failed disk sector) 
or the access path to a disk in the array fails.

Of the many different RAID levels, the specific level used depends on several factors:

• Overhead of reading and writing data

• Overhead of storing and maintaining parity

• Mean Time to Data Loss (MTDL)

The newest level, RAID6, has two implementations (Reed-Solomon P+Q or Double Parity) and 
is the first RAID level to allow the simultaneous loss of two disks, resulting in an improved 
MTDL over RAID5.

Reference Design

This reference design incorporates advantages of immersed IP blocks of the Virtex™-5 
architecture, including: distributed memory, FIFO memory, Digital Clock Managers (DCM), 
36-Kbit Block Select RAMs (block RAM), and ECC blocks. These advantages, in a hardware 
acceleration block, support Reed-Solomon RAID6 (allowing for ECC support) and can support 
other RAID levels, when coupled with the appropriate storage array control firmware.

Introduction In pre-RAID6 levels, when a disk fails, system firmware uses the remaining disks to regenerate 
the data lost from the failed disk. If another disk fails before completion of the regeneration, the 
data is lost forever. At this point, increased MTDL is needed. Until now, the MTDL of RAID5 
satisfied the smaller size of HDDs, which due to their size have lower probability of disk failure.

With the rising popularity of inexpensive disks (such as Serial ATA (SATA) and Serial Attached 
SCSI (SAS)) and larger capacity disks, the Mean Time Between Failures (MTBF) of a disk has 
increased dramatically. 

Here is an example that highlights the increased MTBF (for each disk):

In the case of 50 disks, each with 300 GB capacity, an MTBF of 5 x 105 hours (a 10-14 read 
error rate) results in one array failure in less than eight years for RAID5. RAID6 improves this to 
one array failure in 80,000 years.

Achieving this large MTDL for the RAID system justifies the increased overhead for:

• disk space for additional parity data

• additional reads and writes to disk drives

• system complexity required for handling multiple disk failures
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To understand the Reed-Solomon RAID6, designers must have some familiarity with Galois 
Field (GF) mathematics. This application note describes the GF equations and refers to GF 
mathematical definitions. For detailed information on GF mathematics, see [Ref 1], [Ref 2], and 
[Ref 3].

In GF mathematics, a calculation continues to have the same number of bits as the two 
operands that generated it (i.e., two 8-bit numbers result in an 8-bit number). Equation 1 and 
Equation 2 are the definitions of GF multiplication and division. The addition/subtraction in 
these equations is regular-integer addition/ subtraction, which can be done using the FPGA 
fabric.

Equation 1

Equation 2

This reference design implements the gflog and gfilog values with the polynomial 
x8 + x4 + x3 + x2 = 1 and generates the following look-up tables (LUTs) (Table 1 and Table 2), 
which are stored in block RAM.

Notes: 
1. The GFLOG(00) is undefined and requires special treatment in the reference design.

Table  1:  GFLOG LUT, Stored in Block RAM

GFLOG 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 X(1) 0 1 19 2 32 1A C6 3 DF 33 EE 1B 68 C7 4B

1 4 64 E0 0E 34 8D EF 81 1C C1 69 F8 C8 8 4C 71

2 5 8A 65 2F E1 24 0F 21 35 93 8E DA F0 12 82 45

3 1D B5 C2 7D 6A 27 F9 B9 C9 9A 9 78 4D E4 72 A6

4 6 BF 8B 62 66 DD 30 FD E2 98 25 B3 10 91 22 88

5 36 D0 94 CE 8F 96 DB BD F1 D2 13 5C 83 38 46 40

6 1E 42 B6 A3 C3 48 7E 6E 6B 3A 28 54 FA 85 BA 3D

7 CA 5E 9B 9F 0A 15 79 2B 4E D4 E5 AC 73 F3 A7 57

8 7 70 C0 F7 8C 80 63 0D 67 4A DE ED 31 C5 FE 18

9 E3 A5 99 77 26 B8 B4 7C 11 44 92 D9 23 20 89 2E

A 37 3F D1 5B 95 BC CF CD 90 87 97 B2 DC FC BE 61

B F2 56 D3 AB 14 2A 5D 9E 84 3C 39 53 47 6D 41 A2

C 1F 2D 43 D8 B7 7B A4 76 C4 17 49 EC 7F 0C 6F F6

D 6C A1 3B 52 29 9D 55 AA FB 60 86 B1 BB CC 3E 5A

E CB 59 5F B0 9C A9 A0 51 0B F5 16 EB 7A 75 2C D7

F 4F AE D5 E9 E6 E7 AD E8 74 D6 F4 EA A8 50 58 AF

Table  2:  GFILOG LUT, Stored in Block RAM

GFILOG 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 4 8 10 20 40 80 1D 3A 74 E8 CD 87 13 26

1 4C 98 2D 5A B4 75 EA C9 8F 3 6 0C 18 30 60 C0

0x02 0x08 gfi gf 0x02( )log gf 0x08( )log+[ ] gfi 0x01 0x03+[ ]
gfi 0x04[ ] 0x10=log

=log=log=⊗

0x0d 0x11÷ gfi gf 0x0dlog[log= gf 0x11 ]
gfi 0x68 0x64 ]– gfi 0x04[ ] 0x10=log=[log

=log–
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Notes: 
1. The GFILOG(FF) is undefined and requires special treatment in the reference design.

Another differentiator of RAID6 is that data and redundancy information is stored on multiple 
disks. Figure 1 shows an example of a 7-disk system with five active disks and two spare disks 
(used as hot spare backups for data recovery). Data and parity information is striped 
horizontally across the drives in blocks of data. Each block is typically a multiple of 512 bytes, 
and data is physically stored on 512-byte sectors on the disk drives. To keep the parity drives 
from being a system bottleneck (which can occur in RAID4), the parity information rotates 
around the drives in integer increments of a block of data. The five-drive case has a 40% 
storage overhead for parity, while larger disk arrays can reduce this overhead (e.g., the 
overhead in a 12-disk system is reduced to 16%).

2 9D 27 4E 9C 25 4A 94 35 6A D4 B5 77 EE C1 9F 23

3 46 8C 5 0A 14 28 50 A0 5D BA 69 D2 B9 6F DE A1

4 5F BE 61 C2 99 2F 5E BC 65 CA 89 0F 1E 3C 78 F0

5 FD E7 D3 BB 6B D6 B1 7F FE E1 DF A3 5B B6 71 E2

6 D9 AF 43 86 11 22 44 88 0D 1A 34 68 D0 BD 67 CE

7 81 1F 3E 7C F8 ED C7 93 3B 76 EC C5 97 33 66 CC

8 85 17 2E 5C B8 6D DA A9 4F 9E 21 42 84 15 2A 54

9 A8 4D 9A 29 52 A4 55 AA 49 92 39 72 E4 D5 B7 73

A E6 D1 BF 63 C6 91 3F 7E FC E5 D7 B3 7B F6 F1 FF

B E3 DB AB 4B 96 31 62 C4 95 37 6E DC A5 57 AE 41

C 82 19 32 64 C8 8D 7 0E 1C 38 70 E0 DD A7 53 A6

D 51 A2 59 B2 79 F2 F9 EF C3 9B 2B 56 AC 45 8A 9

E 12 24 48 90 3D 7A F4 F5 F7 F3 FB EB CB 8B 0B 16

F 2C 58 B0 7D FA E9 CF 83 1B 36 6C D8 AD 47 8E X(1)

Table  2:  GFILOG LUT, Stored in Block RAM (Continued)

GFILOG 0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 1:  RAID6 Disk Data Structure 
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RAID6 Parity (P and Q) Equations

To recover from two disk failures or two bad sectors on a horizontal stripe across the storage 
array, RAID6 stores two unique parity values, P and Q. These values, are associated with each 
horizontal data block stripe on the storage array. The stripes are numbered vertically starting 
with 0. The data within each stripe is numbered horizontally and vertically to identify data 
locations within a stripe as well as within a vertical stripe index. Horizontal stripes are made up 
of an integer number of disk sectors. The P parity block is created by logically XORing data 
blocks in a horizontal stripe together, as is done in RAID4 and RAID5 systems. The second 
parity, Q, creates a second equation (Equation 5), which solves for two unknowns (or data 
failure points). For a detailed discussion on the specific GF mathematics and equations 
required to implement a RAID6 system, see [Ref 1]. To simplify the discussion, the equations 
used in this section assume a RAID6 disk array that is composed of three data disks and two 
parity disks for each block of data. These equations extend up to 255 disks (including the two 
parity disks), the mathematical limit of the equations. However, most typical applications range 
from 12 to 16 disks.

P Parity Block

The first RAID 6 equation represents P parity (Equation 3), which is identical to RAID5 and 
RAID4. A simple XOR function generates the parity block from the data values in the same 
sector horizontally across the data drives in an array group. P0 XORs the D00, D10, and D20 
(Figure 1).

Equation 3

N = 0 to maximum number of blocks (sectors) on the disk drive 

M = number of data disks in the array group 

Equation 4 is the first equation for Sector 0 of a three data drive system. In the event of a single 
drive failure, any data block can be regenerated using this equation.

Equation 4

Q Parity Block

The RAID6 Q parity assigns a GF multiplier constant associated with each data disk drive 
(Equation 5). The constant applies only to the data blocks striped horizontally across the array, 
not to each drive in the array. Each data block is GF multiplied by a constant, before adding to 
the data elements of the next data drive. The g constants are determined from the GFILOG 
LUT (Table 2). If another drive is added to the array, then g3 = gfilog(3) = 0x8.

Equation 5

Equation 6 is the equation for the third sector of a three data drive system.

Equation 6

N = 0 to maximum number of blocks (sectors) on the disk drive 

M = number of data disks in the array group 

PN D0N D1N D2N … D M( 1 )N–⊕ ⊕ ⊕ ⊕=

P0 D00 D10 D20⊕ ⊕=

QN g0 D0N⊗( ) g1 D1N⊗( ) g2 D2N⊗( ) … g M 1–( ) D M( 1 )N–⊗⊕ ⊕ ⊕ ⊕=

Q2 0x01 D02⊗( ) 0x02 D12⊗( ) 0x04 D22⊗( )⊕ ⊕=
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Updating Data, 
P, and Q Blocks

Whenever a host-write command occurs, the P and Q parities must be updated. For example, 
the data on Sector 0 of Disk 1 is being written. For this specific sector, the old data block along 
with the old P and Q parity must be read. Equation 7 through Equation 10 calculate the updated 
parities. This is commonly referred to as the write penalty, encountered in RAID storage 
systems. Prior to writing new data and new parity blocks to the array, the old data and old parity 
must first be read from the array and placed in the controller memory, so the new parity can be 
calculated from the old data and old parity information stored on disk.

Equation 7

Equation 8

Equation 9

Equation 10

Three Data 
Drive System
— Disk Failure 
Example

With P and Q parity generated and striped across the five-disk (three data) array, as shown in 
Figure 1, a single or dual-disk failure within the array does not cause loss of data to the host 
application. Any data block can be regenerated using the P and Q parity information stripped 
across the array. Double data block loss is more difficult to regenerate than single data block 
loss. The equations used to regenerate data blocks are discussed in this section.

Typically, arrays either contain hot spares (Figure 1), used when a disk failure occurs, or service 
personnel are rapidly dispatched to replace the failed disks. Another system implementation 
that ensures no data is lost is the use of an entire hot spare RAID6 array to facilitate transferring 
data, reconstructing data, and updating P and Q parity. The system operates in a degraded 
mode until the disks are replaced or the hot spares are switched. Data regenerated from the 
remaining information is striped horizontally on the remaining disks. Regenerated data is then 
sequentially transferred to the hot spare disk until all data (P and Q blocks) has been updated. 
At that time, the system is back in normal operating mode. Different regeneration algorithms 
are used depending upon whether a single or dual-disk failure occurs.

In any RAID system, different types of disk failure scenarios occur. Every data disk added to the 
Bunch of Disks (BOD) adds more variables to the parity generation or data regeneration 
equations that are discussed later in this section. A system with three data disks is used to 
facilitate understanding of data recovery equations that are used in the reference design. Array 
management firmware is responsible for managing the data reconstruction process. The 
algorithms to regenerate data depends on the number of data disks in the array. Assuming that 
the regeneration firmware starts at Sector 0 and works its way to the maximum sector on the 
disk, the equations used to regenerate data are repetitive.

• If a single disk failure occurs when the P block sector is not lost, data is regenerated from 
the remaining data and parity block.

• If the P block sector is lost, data does not have to be regenerated because the data is valid 
and stored on one of the remaining disks in the array. 

• If a hot spare has been activated and the array management software is rebuilding a 
replaced drive, then the P and Q values are regenerated and copied to the new drive.

For this example, assume that Disk 0 fails. Equation 11, Equation 12, and Equation 13 are 
used to regenerate data, sector by sector vertically through a disk (Figure 1), read, and 
returned to a host system.

Equation 11

Equation 12

Equation 13

PN_NEW PN_OLD D1N_OLD D1N_NEW⊕ ⊕=

QN_NEW QN_OLD g( 1 D( 1N_OLD D1N_NEW ) )⊕⊗⊕=

P0_NEW P0_OLD D10_OLD D10_NEW⊕ ⊕=

Q0_NEW Q0_OLD 0x02 D10_OLD D10_NEW⊗( )⊗[ ]⊕=

D00 D10 D20 P0⊕ ⊕=

D01 D11 P1 D21⊕ ⊕=

D02 P2 D12 D22⊕ ⊕=
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P3 does not need to be regenerated for host read commands. Q4 does not need to be 
regenerated for host read commands.

The system cannot accept new write data because there is no space to store the information 
unless hot spare drives are present or the failed disks have been replaced. The following 
discussion assumes that the hot spare drives are enabled and ready to accept regenerated 
data and parity blocks from the RAID controller.

In this example, if a dual disk fails, one of the eight equations (double data, P and Q, P and D0, 
P and D1, P and D2, Q and Do, Q and D1, and Q and D2) must be used to regenerate data and 
parity blocks in a RAID6 system. Determining which equation to use depends upon the set of 
disks that fail and the sector of the disk that is currently being regenerated. Disk array 
management firmware is typically responsible for managing the disk interface and regeneration 
algorithms. Array management firmware is not part of this reference design. See Equation 16, 
Equation 17, Equation 20, Equation 21, Equation 26, Equation 27, Equation 34, and 
Equation 35.

P Parity Generation or Regeneration

P Parity Generation and P Parity Regeneration are the simplest regeneration possibilities 
described in this application note; in either case, the data is all that is needed. The simple XOR, 
Equation 14, finds the P value. In this case, the third drive has failed and the parity is being 
regenerated. Regenerated parity is written to one of the hot spare drives under control of the 
array management firmware.

Equation 14

Q Parity Generation or Regeneration

Q Parity Generation or Regeneration requires GF mathematics, using the GFLOG and 
GFILOG LUTs (hard-coded into block RAM) (see Table 1 and Table 2) and the fabric for integer 
addition. Equation 15 regenerates Sector 2 of Disk 2 shown in Figure 1. Q parity is written to 
one of the hot spare drives under control of the array management firmware.

Equation 15

P and Q Regeneration

P and Q Regeneration is a superset of the previous two cases (“P Parity Generation or 
Regeneration” and “Q Parity Generation or Regeneration”) because all of the data disks are still 
available. To save calculation time, Equation 16 and Equation 17 are run at the same time, 
using multiple datapaths. In this case, Sector 4 of Disk 0 and Disk 4 have failed. Regenerated 
P and Q parity blocks are written to the hot spare drives under control of the array management 
firmware.

Equation 16

Equation 17

Q and Data Regeneration

Q and Data Regeneration is the next level of complexity. Since the P parity is intact, the data 
can be recovered with the simple XOR equation. The Q parity regeneration is possible using 
the recovered data. The D1 and D2 GF multiplication of the Q parity is calculated in parallel to 
the D0 parity to reduce latency. Equation 18 through Equation 21 show the scenario of Disk 0 
and Disk 1 failing and regenerating Sector 4, as shown in Figure 1. When a host read command 
is in progress, the regenerated data block is returned to the host. Q parity and regenerated data 
blocks are written to the hot spare drives under control of the array management firmware.

P1 D01 D11 D21⊕ ⊕=

Q2 0x01 D02⊗( ) 0( x02 D12 ) 0( x04 D22 )⊗⊕⊗⊕=

P4 D04 D14 D24⊕ ⊕=

Q4 0x01 D04⊗( ) 0( x02 D14 ) 0( x04 D24 )⊗⊕⊗⊕=
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Equation 18

Equation 19

Equation 20

Equation 21

P and Data Regeneration

With P and data regeneration, lost data must be generated with the Q parity equations, creating 
an intermediate Q’ value. The P parity then uses the newly generated data to complete the 
XOR equation. The general case equations, Equation 22 through Equation 24 (assuming D0N 
is lost), are followed by the specific equations (Equation 25 through Equation 27) for the case 
where Sector 1 is lost for both Disk 1 and Disk 2, based on the example shown on Figure 1. 
When a host read command is in process, the regenerated data block is returned to the host. 
Regenerated data and parity blocks are written to the hot spare drives under control of the array 
management firmware.

Equation 22

Equation 23

Equation 24

Equation 25

Equation 26

Equation 27

Double Data Regeneration

Double data regeneration is the most complicated case in RAID6 and in the reference design. 
Two intermediate calculations (P' and Q') are required. The general equations (Equation 28 
through Equation 31) are lengthy. The assumption is that D0N and D1N are lost in the example 
shown in Figure 1. Since there are only three data disks in this example, and two disks are 
missing Sector 0 of Disk 0 and Disk 1, the intermediate equations (Equation 32 through 
Equation 35) are defined by the remaining data in Disk 2. When a host read command is in 
progress, the regenerated data blocks are returned to the host. Regenerated data blocks are 
written to the hot spare drives under control of the array management firmware.

Equation 28

Equation 29

Equation 30

Equation 31

Equation 32

Equation 33

Equation 34

Equation 35

D0N D1N D2N … D M( 1 )N PN⊕–⊕ ⊕ ⊕=

QN 0x01 D0N⊗( ) 0( x02 D1N ) 0( x04 D2N ) …
g( M( 1 )– D M( 1 )N )–⊗

⊕
⊕

⊗⊕⊗⊕=

D04 D14 D24 P4⊕ ⊕=

Q4 0x01 D04⊗( ) 0( x02 D14 )⊗⊕ 0( x04 D24 )⊗⊕=

Q′
N 0x02 D1N⊗( ) 0( x04 D2N )⊗⊕ … g( M( 1 )– D M( 1 )N )–⊗⊕ ⊕=

D0N 0x01 Q( N Q′
N )⊕⊗=

PN D0N D1N D2N … D M( 1 )N–⊕ ⊕ ⊕ ⊕=

Q′
1 0x02 D11⊗( ) 0( x04 D21 )⊗⊕=

D01 0x01 Q1 Q′
1⊕( )⊗=

P1 D01 D11 D21⊕ ⊕=

Q′
N 0x04 D2N⊗( ) 0( x08 D3N ) … g( M( 1 )– D M( 1 )N )–⊗⊕ ⊕⊗⊕=

P′
N D2N … D M( 1 )N–⊕ ⊕=

D0N 0( x01 0x02 ) 1–⊕ 0(( x02 PN P′
N )⊕( ) QN Q′

N )⊕ ⊕⊗ ⊗=

D1N D0N P( N P′
N )⊕ ⊕=

Q′
0 0x04 D20⊗( )=

P′
0 D20=

D00 0x01 0x02⊕( ) 1– 0x02 P0 P′
0⊕( )⊗( )(⊗ Q0⊕ Q′

0 )⊕=

D10 D00 P( 0 P′
0 )⊕ ⊕=
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Reference 
Design

System Architecture

This application note assumes the system architecture shown in Figure 2.

The system contains a RAID with ECC host controller on an ML555 demonstration board. This 
board contains a Virtex-5 LX50T FPGA (in green) along with a DDR2 SODIMM memory and a 
Serial ATA (SATA) connection that allows connection to a port multiplier. The port multiplier 
connects to multiple SATA HDDs. A SATA protocol controller that interfaces with the Xilinx 
Memory Interface Generator (MIG) memory controller and the system controller can be 
implemented in the FPGA. Replacing the SATA protocol controller with Serial Attached SCSI 
(SAS), Fibre Channel (FC), or any other disk interface protocol is possible depending on the 
overall system requirements.

This application note concentrates on the hardware acceleration portion of a RAID6 with ECC 
system, as shown in red in Figure 2, and includes:

• Simplified system controller (testblock module)

• DDR2 memory controller that contains 8 additional data for the ECC parity created in the 
ECC block discussed later in this section (the memory controller treats these 8 bits as 
extra data)

• RAID with ECC IP block

The other portions of Figure 2 are only there to show a possible system-level implementation 
using the RAID with ECC-IP hardware connected in a SATA system.

The simplified system controller block:

• Controls the RAID6 with ECC hardware

• Sets up pointers to the data and parity blocks of DDR2 memory.

• Sets up the hardware:

♦ Creates values for D0, D1, and D2

♦ Loads the values into the DDR2 memory

♦ Creates the requests for the different regeneration cases (discussed later in this 
section)

♦ Checks the data in the DDR2 memory against the expected values

♦ Sets the LEDs to indicate the pass/fail of the test (details in the README file)

The reference design does not include the disk array management or the Serial ATA interface 
to the disk drives. The simplified system controller included in the reference design generates 
data and parity blocks that come from an HDD connection and is not required with this 
reference design. The testblock generates data placed in the DDR2 memory that serves as a 
cache for the RAID with ECC hardware accelerator. A MIG memory controller controls the 
DDR2 memory. The memory controller provides access to the DDR2 memory. The memory 
controller connects to both the testblock and the RAID with ECC hardware accelerator via a 
multiplexer. 

www.BDTIC.com/XILINX
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Hardware Accelerator

A RAID6 hardware accelerator is a mathematically intensive RAID level. In previous RAID 
levels, the only computation is a simple XOR of the data. However, the RAID6 calculations 
require each block of data to be stored in a memory buffer, and then read into a temporary data 
buffer while being XORed or added (using Galois mathematics) to other data elements. 

A large amount of data manipulation is required. Data manipulation is time intensive, but 
hardware implementations are faster than processor-only register calculations because 
hardware provides parallel manipulation of data blocks, clock-rate LUT access, clock rate 
integer addition of two 8-bit values, and multipliers much faster than a processor. The RAID6 
calculations are a small portion of the overall time period used (including disk seek, disk 
access, data transfer (HDD to/from cache memory), and the RAID6 acceleration).

The RAID hardware accelerator memory interface is based on the topography of the ML555 
board (which is the verification platform). This determines the data flow block discussed in 
“Data Flow for Different Regeneration Cases,” page 11.

The hardware accelerator has four main blocks (Figure 3).

• Data Manipulation Block (DMB)
• RAID Finite State Machine (FSM)
• Device Control Register FSM (DCR FSM)
• MIG_MEM_IF

Figure 2:  Possible RAID6 System Implementation
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Data Manipulation Block

The Data Manipulation Block (DMB) shown in Figure 4 is the modular block of logic that 
actually performs the mathematical operations on one byte of the data. (Depending on the 
system data width, more DMB logic blocks can be added to support larger data widths.) This 
reference design is set up for an 8-byte implementation for the LX50T and a 16-byte 
implementation for the LX110T (8 and 16 instantiations of the DMB, respectively). It can create 
parity and regenerate data of any case discussed in the “Three Data Drive System — Disk 
Failure Example” section. Since all of the equations involve GF addition (XOR) or GF 
multiplication (GFILOG, GFLOG, and integer addition), there are several main building blocks 
of the DMB:

• XOR_BRAM (blue blocks in Figure 4)

• MUX_BRAM (green blocks in Figure 4)

• RAID_MULT_4 (yellow blocks in Figure 4)

The XOR_BRAM block completes the simple XOR function for calculating the P parity. The 
XOR_BRAM block contains a 32-bit register and a 2:1 MUX for use in several other 
regeneration scenarios.

The MUX_BRAM block(s) hold calculated data blocks until other data blocks are either 
retrieved from the MIG memory controller or calculated in other blocks of the DMB. The 2:1 
MUXs are used for many regeneration possibilities that the DMB covers.

The RAID_MULT_4 block completes the GF multiplication portion of the equations (see 
Equation 1). This is done in three steps. 

1. The GFLOG is calculated. This is implemented with a block RAM used as a LUT (one dual 
port block RAM is used for two LUTs). The GFLOG table (Table 1) is hard-coded into the 
block RAM and is addressed by the data coming into the RAID_MULT_4 block. 

2. The result of the GFLOG table (Table 1) is added to the GFLOG of the Gn constant (the 
GFLOG result is hard-coded for the small number of possible outcomes with the reference 
design using a 3 data disk system. For systems with a large number of disk drives in an 
array, the Gn constant multiplexer can be implemented as a LUT, with the input controlled 
through a DCR register to select the appropriate Gn constant) by a portion of one of the 8-
bit adders. 

Figure 3:  RAID6 Hardware Accelerator Block Diagram

XAPP865_03_031407

RAID FSM
MIG_MEM_IF 

(with ECC)

Data Manipulation Block

DCR FSM

www.BDTIC.com/XILINX

http://www.xilinx.com


Reference Design

XAPP865 (v1.0) May 2, 2007 www.xilinx.com  11

R

3. The sum enters the GFILOG LUT implemented in another block RAM (similar to the 
GFLOG implementation). If the input to the RAID_MULT_4 block is zero, the result of this 
special GF multiplication case is zero.

Several other XOR and MUXs tie these building blocks together, as shown in Figure 4. Detailed 
analysis of the data flow through the DMBs, covering all of the logic equations implemented in 
the reference design, is covered in the “Data Flow for Different Regeneration Cases” section 
that follows.

Data Flow for Different Regeneration Cases

This section summarizes data flow through DMBs for the different regeneration scenarios for 
the five disk drive example. Detailed analysis of the data flow through the DMB blocks, covering 
all of the logic equations implemented in the reference design, is covered in the “Data Flow for 

Figure 4:  Data Manipulation Block Logic for One Byte
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Different Regeneration Cases” section. The actual hardware has many cycle-to-cycle 
dependencies that are not described here (to simplify readability and understanding).

Generate/Regenerate P Parity

1. Write the first data block from the MIG memory controller into XOR_BRAM.

2. XOR the second data block from the MIG memory controller with output of XOR_BRAM 
and write it back into XOR_BRAM.

3. XOR the third data block from the MIG memory controller with output of XOR_BRAM and 
write it back into XOR_BRAM.

4. When the MIG memory controller is ready, read P parity out of the XOR_BRAM through the 
4:1 MUX to the MIG memory controller.

Generate/Regenerate Q Parity

1. Write the first data block from the MIG memory controller into MUX_BRAM_0.

2. Read the data block out of MUX_BRAM_0 and run through RAID_MULT_4(b), then write 
the result back into MUX_BRAM_0.

3. Write the second data block from the MIG memory controller into MUX_BRAM_2, XOR the 
read data out of MUX_BRAM_0 with the data read from MUX_BRAM_2 passed through 
RAID_MULT_4(c), and then write the result into MUX_BRAM_1.

4. Write the third data block from the MIG memory controller into MUX_BRAM_2, XOR the 
read data out of MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of 
MUX_BRAM_1 through the MUX_BRAM_0, and then write the result into MUX_BRAM_1.

5. When the MIG memory controller is ready, read the Q parity block out of the 
MUX_BRAM_1 through the 4:1 MUX to the MIG memory controller.

Regenerate Data

1. Write the P parity block from the MIG memory controller into XOR_BRAM.

2. XOR a data block from the MIG memory controller with output of XOR_BRAM and write it 
back into XOR_BRAM.

3. XOR another data block from the MIG memory controller with output of XOR_BRAM and 
write it back into XOR_BRAM.

4. When the MIG memory controller is ready, read reconstructed data out of the XOR_BRAM 
through the 4:1 MUX to the MIG memory controller.

Regenerate Q (a) and P (b) Parity

Letters (a) and (b) are used to distinguish simultaneous parallel calculations.

1. Write the first data block from the MIG memory controller into MUX_BRAM_0 and 
XOR_BRAM memory. This step stores identical data into two block RAM elements in 
preparation for a parallel calculation in step 2.

2. (a) Write the second data block from the MIG memory controller into MUX_BRAM_2, XOR 
read data out of MUX_BRAM_0 with the data read from MUX_BRAM_2 passed through 
RAID_MULT_4(c), and then write the result into MUX_BRAM_1.

(b) XOR the second data block from MIG memory controller with output of XOR_BRAM 
and write it back into XOR_BRAM.

3. (a) Write the third data block from the MIG memory controller into MUX_BRAM_2, XOR 
read data of MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of 
MUX_BRAM_1 passed through the MUX_BRAM_0, and then write the result into 
MUX_BRAM_1.

(b) XOR the third data block from the MIG memory controller with output of XOR_BRAM 
and write it back into XOR_BRAM.
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4. (b) When the MIG memory controller is ready, read the P parity block out of the 
XOR_BRAM through the 4:1 MUX to the MIG memory controller.

5. (a) When the MIG memory controller is ready, read the Q parity block out of the 
MUX_BRAM_1 through the 4:1 MUX to the MIG memory controller. Writes to the MIG 
memory controller must be single threaded as the destination addresses are different for 
the P and Q parity block information.

Regenerate Q (a) Parity and Data (b)

Letters (a) and (b) are used to distinguish simultaneous parallel calculations.

1. (b) Write the P parity block from the MIG memory controller into XOR_BRAM.

2. (a) Write the first data block from the MIG memory controller into MUX_BRAM_0, read data 
out of MUX_BRAM_0 and pass through RAID_MULT_4(b), and then write back into 
MUX_BRAM_0.

(b) XOR first data block from the MIG memory controller with the parity block output of 
XOR_BRAM and write it back into XOR_BRAM.

3. (a) Write another data block from the MIG memory controller into MUX_BRAM_2, XOR the 
read data out of MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of 
MUX_BRAM_0, and then write into MUX_BRAM_1.

(b) XOR the second data block from the MIG memory controller with output of XOR_BRAM 
and write it back into XOR_BRAM, which now contains the regenerated data block.

4. (b) When the MIG memory controller is ready, read the lost data block out of XOR_BRAM 
through the 4:1 MUX to the MIG memory controller, plus write the lost data block into 
MUX_BRAM_2.

5. (a) Read data block from MUX_BRAM_2 and run through RAID_MULT_4(c), read data out 
of MUX_BRAM_0 and XOR these data blocks, and write the result into MUX_BRAM_1.

6. (a) When the MIG memory controller is ready, read the Q parity block out of the 
MUX_BRAM_1 through the 4:1 MUX to the MIG memory controller.

Regenerate P (a) Parity and Data (b)

1. (a) Write the first data block from the MIG memory controller into XOR_BRAM.

(b) Write the first data block from the MIG memory controller into MUX_BRAM_0, read data 
out of MUX_BRAM_0 and pass through RAID_MULT_4(b), then write back into 
MUX_BRAM_0.

2. (a) XOR the second data block from the MIG memory controller with output of XOR_BRAM 
and write it back into XOR_BRAM.

(b) Write the second data block from the MIG memory controller into MUX_BRAM_2, XOR 
read data out of MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of 
MUX_BRAM_0, and then write into MUX_BRAM_1.

3. (b) XOR the read Q' value from MUX_BRAM_1 with registered Q parity, pass that result 
through RAID_MULT_4(d), and then write lost data into MUX_BRAM_3.

4. (b) When the MIG memory controller is ready, read the lost data block from MUX_BRAM_3 
through the 4:1 MUX to the MIG memory controller. If a host read command is in process, 
and this data block is the target of the read command, the array management firmware can 
return the regenerated data to the host after the data has been written to the DDR2 
memory. 

(a) XOR the data block from (b) with the output of the XOR_BRAM, and write the P parity 
block into the XOR_BRAM.

5. (a) When the MIG memory controller is ready, read the P parity block from the XOR_BRAM 
through the 4:1 MUX to the MIG memory controller.

www.BDTIC.com/XILINX

http://www.xilinx.com


Reference Design

XAPP865 (v1.0) May 2, 2007 www.xilinx.com  14

R

Regenerate Double Data

1. Write only known good data blocks from the MIG memory controller into XOR_BRAM and 
MUX_BRAM_0.

2. Read the data block out of MUX_BRAM_0, pass it through RAID_MULT_4(b), and then 
write the value back into MUX_BRAM_0.

3. XOR the P parity block from the MIG memory controller with the output of the XOR_BRAM, 
and write it back into the XOR_BRAM.

4. Write the Q parity block from the MIG memory controller into MUX_BRAM_2, and XOR the 
read data block out of MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out 
of MUX_BRAM_0, and then write the result into MUX_BRAM_1. MUX_BRAM_0 contains 
the only known good data block at this point of the calculation for this data stripe.

5. XOR the read value out of XOR_BRAM, which is passed through RAID_MULT_4(a) with 
the read value output of MUX_BRAM_1, then pass this result through RAID_MULT_4(d), 
and finally write the lost data value into MUX_BRAM_3.

6. When MIG memory controller is ready, read the first data block from MUX_BRAM_3 
through the 4:1 MUX to the MIG memory controller, XOR this lost data block with the output 
of the XOR_BRAM, and write the result back into the XOR_BRAM.

7. When the MIG memory controller is ready, read the second data block out of the 
XOR_BRAM through the 4:1 MUX to the MIG memory controller. Two single-threaded 
writes to the MIG memory controller are required because the two regenerated data blocks 
must be written into two different memory locations in DDR2 memory.

Update P and Q Parity

These calculations are only required when a host write command is issued to the array and new 
parity blocks must be generated to replace old parity blocks. Array management firmware is 
responsible for retrieving data and parity information from the disk array and placing the 
contents in the DDR2 memory. Writing to an array that is being constructed can be permitted, 
depending on the system specific implementations (which are beyond the scope of this 
application note). 

1. Write the old data block from the MIG memory controller into XOR_BRAM and 
MUX_BRAM_0.

2. Write the new data block from the MIG memory controller into MUX_BRAM_2, XOR the 
new data block from the MIG memory controller with output of XOR_BRAM, and then write 
the result back into XOR_BRAM.

3. XOR the values out of MUX_BRAM_0 with the value read out of MUX_BRAM_2, which are 
passed through (g=1 so data is not modified) RAID_MULT_4(c), and then write the value 
into MUX_BRAM_1.

4. XOR the old P parity block from the MIG memory controller with the output of the 
XOR_BRAM, and write the result back into XOR_BRAM.

5. XOR the registered old Q parity block with the output of the MUX_BRAM_1, then write the 
result in MUX_BRAM_3.

6. When the MIG memory controller is ready, read the new P parity out of the XOR_BRAM 
through the 4:1 MUX to the MIG memory controller.

7. When the MIG memory controller is ready, read the new Q parity out of the MUX_BRAM_3 
through the 4:1 MUX to the MIG memory controller. At this point in the calculation, array 
management firmware can write to the disk array and update the new data, P parity, and Q 
parity blocks from information contained in the DDR2 memory.

RAID FSM

The RAID Finite State Machine (FSM) is the main control logic of the reference design. It 
controls the MIG_IF and ECC block along with all the DMB signals, including the block RAM 
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address, read, write control, and MUX select lines. This FSM maintains all of the data pipelining 
and efficiently passes the data through the DMB.

Status/Control Registers and DCR FSM

The hardware accelerator depends on firmware, which in this reference design is emulated with 
the testblock, to place disk data into the DDR2 memory and to manage the memory buffer. The 
testblock controls the hardware accelerator with a set of registers. Hardware status is provided 
to the testblock on status registers. Control registers are provided to point to data and parity 
block starting addresses in the external DDR2 memory as well as control registers to define the 
type of regeneration calculation to be performed. Another register sets the size of the data 
block calculated; the default is 512 bytes. Status registers indicate when the calculation, on a 
block basis (determined by the RAID_SIZE register), is finished.

Ten registers are provided to interface to the accelerator hardware. Table 3 contains the 
address and a description of the register function. The testblock reads and writes to all of these 
registers. All registers are readable by the hardware accelerator and only RAID_RECON is 
writable. 

Table  3:  Status/Control Register Descriptions

Register Name Description

RAID_RECON

Bit[0] indicates to the RAID IP a regenerate request when 1. All other DCR 
registers should be configured for the RAID6 calculation to be performed prior 
to asserting this bit. 

Bit[0] indicates to the processor a regenerate is complete when 0. The 
processor polls this register to determine when the RAID6 hardware has 
completed the requested operation.

RAID_LOST

Indicates to the RAID IP which type of disks has failed:
0x01 Q regenerate
0x02 P regenerate
0x03 P &Q regenerate
0x04 D0 regenerate(1)

0x05 D0 & Q regenerate
0x06 D0 & P regenerate
0x08 D1 regenerate(1)

0x09 D1 & Q regenerate
0x0A D1 & P regenerate
0x0C D0 & D1 regenerate
0x10 D2 regenerate(1)

0x11 D2 & Q regenerate
0x12 D2 & P regenerate
0x14 D2 & D0 regenerate
0x18 D1 & D2 regenerate

RAID_1 Memory base address pointer to first data block stored in DDR2 memory(2).

RAID_2 Memory base address pointer to second data block stored in DDR2 memory(3).

RAID_3 Memory base address pointer to third data block stored in DDR2 memory.

RAID_4 Memory base address pointer reserved for a fourth data block stored in DDR2 
memory.

RAID_P Memory base address pointer to the P parity block stored in DDR2 memory.

RAID_Q Memory base address pointer to Q parity block stored in DDR2 memory.
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MIG Memory Controller and MIG_MEM_IF (with ECC)

The memory controller in this reference design was created by the MIG tool for the memory on 
the ML555. This usage of the MIG memory controller allows the other types and sizes of 
memories to be connected to the RAID with ECC IP block based on system requirements.

The MIG_MEM_IF block uses several FIFOs to stage data write and reads in the large burst 
blocks that the RAID with ECC processes. Also this module utilizes the ECC blocks of the 
FIFO_36_72 to generate ECC parity and check and correct the data based on the ECC parity 
bits. Figure 5 shows the enabled paths for the write and read FIFO and the ECC blocks that are 
enabled. The FIFO that puts the RAID data into the DDR2 memory generates the ECC parity 
to write into the DDR2 memory. The FIFO that takes the read data of the DDR2 memory uses 
the ECC correction block to correct bit errors on the DDR2 memory. For a 40-bit DDR2 memory 
interface, only one FIFO_36_72 is required. For a 72-bit DDR2 memory interface, two 
FIFO_36_72 instantiations are required.

RAID_M

Bits [31:29] indicates to the RAID IP which type of regeneration is requested:
000 indicates a single D regeneration
001 indicates a single P regeneration
010 indicates a single Q regeneration
011 indicates updating P & Q for a Data write
100 indicates a double D & D regeneration
101 indicates a double D & Q regeneration
110 indicates a double D & P regeneration
111 indicates a double Q & P regeneration

RAID_LED Indicates to the system or user if RAID test is in progress or completed. 
Controls diode DS11 on the ML405 hardware platform.

RAID_SIZE

Bits [27:31] indicate to the RAID IP the horizontal size of the data and parity 
blocks:

00000 512 byte (default)
00001 1 Kbyte
00010 2 Kbyte
00100 4 Kbyte
01000 8 Kbyte
10000 16 Kbyte

 SBERR Indicates when at least one single bit error occurred but has been corrected. A 
write to address x09 clears this register.

DBERR Indicates when at least one double bit error has occurred and data is now 
invalid. A write to address x0A clears this register.

 INJECT

Writing the following values to register x0B allows either a single or double bit 
error to be injected.
[00] no injected errors 
[01] or [10] cause a single bit errors, [11] double bit errors

Notes: 
1. Also indicates data to be written when the RAID_MODE = 011
2. Indicates old data when RAID_MODE = 011
3. Indicates new data when RAID_MODE = 011

Table  3:  Status/Control Register Descriptions (Continued)

Register Name Description
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Figure 6 shows data from the memory where a single bit error was injected (x0A) is replaced 
with (x0B). The parity bits allow the ECC logic to recognize the bit error and corrects it in 
Figure 7. The data reads out as the correct (x0A), and indicates that there was a single bit error 
that was corrected.

Figure 5:  ECC Implementation

Figure 6:  Data from Memory with a Single Bit Error
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Figure 8 and Figure 9 show the logic used to write and read data from FIFO_36_72 with a 
limited latency.

Figure 7:  RAID6 Data Input with the Corrected Data

Figure 8:  Writing Data from RAID into the MIG Interface and Generating the ECC

Figure 9:  Reading Data from the MIG Interface into the RAID Block and Correcting 
Corrupt Data
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Performance 
and Utilization

Time to Complete Regeneration Calculations

Table 4 shows the regeneration time for the RAID hardware to complete different regeneration 
calculations. The time for the testblock to setup the registers is not included in these 
regeneration times. Time is measured from the point the testblock processor sets the 
RAID_RECON control register bit to the time the hardware resets the RAID_RECON status bit. 
All measurements are for the default 512-byte blocks for a configuration of 64/32 RAID/Memory 
data width in the reference design files. The 128/72 bit version takes half the time of the 64/40 
bit version for a 512-byte block due to the double datapath width. Because of the three data 
drive topography, the update P and Q process takes a longer processing time than double P 
and Q generations; this longer processing time is due to the requirement of the equation to 
write three blocks to the DDR2 memory in the update P and Q mode versus only two blocks in 
the double P and Q mode. In a structure with more data drives, the update improves its latency 
over the double P and Q generation.

Because the RAID6 uses a large amount of block RAM, only the 64/40-bit version fits in the 
LX50T FPGA on the ML555. Table 5 compares the 128/72-bit version to the 64/40-bit version 
and how the 128/72-bit version needs an LX110T to be implemented.

The RAID6 IP, including the ECC support, the MIG memory controller, and testblock, 
showcase a real world design.The performance and utilization of this real world system is 
shown in Table 5. 

Table  4:  Block Regeneration Time for a Three Data Drive Structure Comparison for 128/72 and 64/40 versions of 
the Reference Design

Type of Request
Time for 512 Bytes Number of DDR2 

Memory Reads

Number of 
DDR2 Memory 

Writes64/40(1) 128/72

single P 6.08 µs 3.04 µs 3 1

single Q 8.40 µs 4.20 µs 3 1

single Data 6.16 µs 3.08 µs 3 1

double P & Q 8.92 µs 4.46 µs 3 2

double Q & D 8.70 µs 4.35 µs 3 2

double P & D 8.40 µs 4.20 µs 3 2

double D & D 9.38 µs 4.69 µs 3 2

update P & Q 9.98 µs(2) 4.99 µs(2) 3 3

Notes: 
1. The 64/40 design is supported on the ML555, while the 128/72 is not supported based on the block RAM requirement shown in Table 5.
2. Improved vs. double P and Q when more data drives are added.
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Ports Most ports of the hardware accelerator interface directly to the MIG memory controller and 
several others hook up to the status/control registers. Additional I/O pins can be allocated for 
the two clocks and the system reset. These ports are described in Table 6.

Table  5:  System Performance and Utilization

Device RAID/Memory 
Width(1) Slices Block 

RAM DCM I/O BUFG Frequency(2)

XC5VLX50T FF1136 64/40 5991 36(3) 1 129(4) 5 200 MHz

20% 60% 8% 26% 15%

XC5VLX110T FF1136 128/72 9188 72 1 141(5) 6 200 MHz

13% 48% 8% 29% 18%

Notes: 
1. Includes the 8 bits of ECC.
2. Frequency in a -3 speed grade.
3. When targeting a 72-bit DDR2 with ECC interface, the 72 block RAM requirement exceeds the 60 block RAM maximum of the LX50T. This 

forces the design into the LX110T, with the resource utilization values shown.
4. For a memory controller configured for 64 bits, but only 40 bits are utilized.
5. For a memory controller configured for 72 bits.

Table  6:  List of Hardware Accelerator Ports

Port I/O Signal Width Interface Description

clk I CLK RAID logic clock

clk_mem I CLK Memory interface clock(1)

rst I RST RAID logic reset

start I REG Start the regeneration process when High

DCR_sel O [1:0] REG Select which DCR registers to read

DCR_reg0 I [31:0] REG First DCR register input

DCR_reg1 I [31:0] REG Second DCR register input

RAID_SIZE I [31:0] REG Determines burst size to process:
0000001 512 bytes                      
0000010 1024 bytes                   
0000100 2048 bytes                    
0001000 4096 bytes                    
0010000 8192 bytes                     
0100000 16384 bytes                                     

Bits 31:7 should always be zero

done O REG Indicates the regeneration process is 
completed when High

SINGLE_ERR O REG Indicates a single bit error occurred

DOUBLE_ERR O REG Indicates a double bit error occurred

mem_wrdata O [63:0](2) MIG Write data for MIG interface

mem_wr_parity O [15:0] MIG Write ECC data from MIG interface

mem_rddata I [63:0](2) MIG Read data for MIG interface

mem_rd_parity I [15:0] MIG Read ECC data from MIG interface

mem_addr O [35:0] MIG Address for MIG interface
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The status/control register implementation for hardware accelerator and testblock allow clock 
domain crossing communication. Table 7 lists the ports that can connect to a system controller 
(testblock).

mem_data_wen O MIG Data write enable for MIG interface

mem_addr_wen O MIG Address write enable for MIG interface

mem_data_valid I MIG Data valid status from MIG interface

Notes: 
1. The Memory interface clock = the RAID clock (additional clock domain crossing must be added for other 

ratios).
2. This interface depends on the memory width used; it is twice the external memory width.

Table  7:  Status/Control Register Ports

Port I/O Signal 
Width Interface Description

rst I RST Register reset.

clk I CLK Register clock.

addr I [4:0] SYS 
CNTRL

Address for system controller.

datain I [31:0] Data in from the system controller.

ren I Read signal from the system 
controller.

wen I Write signal from read signal from 
the system controller.

dataout O [31:0] Data out from the system controller.

RAID_clear I RAID Register output for RAID Hardware 
Accelerator.

RAID_lost O [31:0]

RAID_reconstruct O

RAID_D1 O [31:0]

RAID_D2 O [31:0]

RAID_D3 O [31:0]

RAID_D4 O [31:0]

RAID_P O [31:0]

RAID_Q O [31:0]

RAID_M O [31:0]

RAID_SIZE I [31:0]

 SBERR O SYS 
CNTRL

Indicates that a single bit error 
occurred. Only a reset or a write to 
x09 can clear this bit.

DBERR O Indicates that a double bit error 
occurred. Only a reset or a write to 
x0A can clear this bit.

INJECT I [1:0] Signals that either a single or double 
bit error should be injected.

Table  6:  List of Hardware Accelerator Ports (Continued)

Port I/O Signal Width Interface Description
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Expanding 
Design for 
Larger Arrays

This reference design is designed for a three data drive system (five total drives). Because of 
the redundancy of the calculations, the datapath has the ability to support larger arrays. The 
state machines need modifications to loop multiple times in certain states to calculate values 
for larger arrays. The status/control registers must be expanded to provide additional pointers 
to data blocks as well as control functions for data recovery operations. Also, the system 
controller (testblock) must manage more base memory address pointers.

Other Uses of 
the Hardware 
Accelerator

As mentioned in “Reference Design,” page 8, firmware plays a major role in all RAID systems. 
Because the hardware changes little for the different RAID levels, the hardware accelerator can 
remain the same, and the firmware changes to incorporate the different ways the data is 
organized on the HDD and how the parity is generated.

The hardware accelerator can support other RAID levels beyond RAID6 with minimal (if any) 
modifications. RAID Double Parity (DP), RAID5, RAID4, and RAID3 are among the supportable 
levels.

A brief discussion of these RAID levels and how the hardware accelerator can support them is 
described in “RAID DP,” “RAID5,” and “RAID3 and RAID4” sections.

RAID DP

RAID DP can support two simultaneous disk failures and has the advantage of generating both 
parities with simple XOR function. RAID DP performs a horizontal parity calculation as used in 
RAID3 and RAID4 systems. In addition, RAID DP performs a diagonal parity calculation. The 
parity information is not rotated across the drives as done in RAID5. See [Ref 5] for a detailed 
discussion on RAID Double Parity. While the diagonal parity calculation simplifies the hardware 
parity calculation, the disadvantage is the need for more disk accesses to read additional disk 
sectors for the diagonal parity calculation. For example, for RAID DP in Figure 10, seven 
different blocks are accessed to regenerate the loss of two blocks.

The reference design has the ability to cover all of these levels with the appropriate firmware 
(not included in the reference design). The firmware passes the data to the hardware 
accelerator and always assumes either a P generation/regeneration, one data regeneration, or 
in the case of two data regenerations, two subsequent single data regenerations with the data 
to be XORed. In the example shown in Figure 10, if D00 and D10 are lost, the firmware must 
first request a single data regeneration for D00 using D11, D22, P3, and P20 (highlighted in red). 
After regenerating D00, D10 is regenerated by using D00, D20, P00, and P20.

RAID_S_BIT_ERROR I RAID Signal that sets the SBERR register 
when High.

RAID_D_BIT_ERROR I RAID Signal that sets the DBERR register 
when High.

Table  7:  Status/Control Register Ports (Continued)

Port I/O Signal 
Width Interface Description
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RAID5

RAID5, shown in Figure 11, handles just one disk failure at a time. It rotates the parity 
information on multiple drives to improve the read/write latency associated with accessing the 
HDDs in the same way as RAID6. However, in this case, there is only one set of parities. 
Regenerating single data blocks is identical to RAID6, except one more data block needs to 
XORed for the same five-disk system. There is only 20 percent storage overhead for parity and 
20 percent more storage capacity in the RAID5 five-disk array than in an equivalent RAID6 
five-disk array system.

RAID5 systems only utilize the XOR_BRAM block shown in the DMB datapath logic (see 
Figure 4). 

Figure 10:  RAID DP Data Structure
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Figure 11:  RAID 5 Data Structure
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RAID3 and RAID4

RAID3 and RAID4 are identical from a parity generation and data regeneration perspective. 
The only difference is the organization of the congruent data. RAID3 and RAID4 have a fixed 
parity disk and RAID5 and RAID6 both use rotating parity disks. Systems with fixed parity disks 
can experience bottlenecks, if there is a large write-to-read ratio, because the parity disk must 
be accessed twice for each block-write access. A RAID4 configuration is shown in Figure 12.

Reference 
Design 
Simulation 

The reference design supplied in the ZIP file 
(http://www.xilinx.com/bvdocs/appnotes/xapp865.zip) is the design that works on the ML555 
demonstration board. The design contains the testblock, status/control registers, RAID6 with 
ECC IP, a MIG-based DDR2 memory controller, and a DDR2 model for the SODIMM of the 
ML555. This design was verified in ISE™ 9.1 SP1. Use the latest MIG tool to generate the 
memory controller design portion of this reference design. The directory structure is shown in 
Figure 13.

The hw_accelerator directory contains several files for implementation, including a UCF for the 
ML555 and a bit file of this design for the ML555. Also included are the top-level modules and 
the system controller modules. These files are shown in Figure 14.

Figure 12:  RAID4 Data Structure
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The rtl directory contains the two parameter files referenced by the raid and ddr2 memory 
controller files to define the data width. These are shown in Figure 15.

The source_files directory contains the RAID with ECC IP source files and the directory 
ddr2_cntrl_source/rtl, which contains the source files generated by the MIG tool (see 
Figure 16). If creating a new design, it is recommended that the memory controller be 
generated with the latest version of MIG tool.

Figure 14:  Hardware Accelerator Contents

Figure 15:  Parameter Files

Figure 16:  RAID6 with ECC Source Files
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Finally, the sim directory contains the DDR2 memory simulation files along with simulation 
scripts. The sim_raid6_v5.bat calls the sim_top.do that compiles all the source files 
along with linking the appropriate simulation libraries. Double click on this batch file and the 
simulation runs until the RAID has reconstructed all of the cases discussed in Table 5.

Conclusions This reference design supports calculating Reed-Solomon RAID6 parity generation and data 
regeneration on 512- to 16,384-byte blocks of data from a DDR2 memory. This design takes 
advantage of multiple immersed IP blocks of the Virtex-5 FPGA to improve performance and 
decrease fabric utilization. The block RAMs are used for the GF mathematical LUTs, and the 
ECC blocks are used with the FIFO_32_72 primitives to support ECC-enabled memories, plus 
the potential to handle the RAID-level data structure in the HDDs. Other Xilinx solutions also 
increase the performance of calculating RAID6 in a Virtex-5 FPGA, among them is using the 
MIG memory controller to allow shared memory bandwidth and the RocketIO™ transceivers to 
allow serial interfaces to many different available HDDs.

This generation/regeneration is time intensive, but it still takes less time than the equivalent 
firmware application. As in all systems, hardware and firmware tradeoffs are evaluated. This 
application note covers all of the equations for a small three data drive array and shows how 
one type of system can be implemented on a Xilinx ML555 demonstration board.

Figure 17:  MIG Generated DDR2 Memory Controller Source Files

Figure 18:  Simulation Files
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