SN74SSTU32864E 具有 SSTL_18 输入和输出的 25 位可配置寄存缓冲器

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.

All inputs are SSTL_18, except the LVCMOS reset (RESET) and LVCMOS control (Cn) inputs. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications.

The SN74SSTU32864E operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is cleared and the data outputs are driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register becomes active quickly, relative to the time required to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the SN74SSTU32864E must ensure that the outputs remain low, thus ensuring no glitches on the output.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low. The LVCMOS RESET and Cn inputs always must be held at a valid logic high or logic low level.

The device also supports low-power active operation by monitoring both system chip select (DCS and CSR) inputs and will gate the Qn outputs from changing states when both DCS and CSR inputs are high. If either DCS or CSR input is low, the Qn outputs function normally. The RESET input has priority over the DCS and CSR control and forces the output low. If the DCS control functionality is not desired, the CSR input can be hard-wired to ground, in which case the setup-time requirement for DCS is the same as for the other D data inputs.

The two VREF pins (A3 and T3) are connected together internally by approximately 150 . However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor

SN74SSTU32864E
Voltage Nodes(V) 1.8  
Vcc range(V) 1.7 to 1.9  
Input Level SSTL_18  
Output Level SSTL_18  
Logic True  
No. of Outputs 25  
Output Drive(mA) -8/8  
Static Current 40 mA  
tpd max(ns) 2.35  
Technology Family SSTL  
Rating Catalog
SN74SSTU32864E 特性
SN74SSTU32864E 芯片订购指南
器件 状态 温度 价格(美元) 封装 | 引脚 封装数量 | 封装载体 丝印标记
SN74SSTU32864EZKER ACTIVE 0 to 70 6.60 | 1ku LFBGA (GKE) | 96 1000 | LARGE T&R  
SN74SSTU32864EZKER ACTIVE 0 to 70 6.60 | 1ku LFBGA (ZKE) | 96 1000 | LARGE T&R  
SN74SSTU32864E 质量与无铅数据
器件 环保计划* 铅/焊球涂层 MSL 等级/回流焊峰 环保信息与无铅 (Pb-free) DPPM / MTBF / FIT 率
SN74SSTU32864EZKER TBD  SNPB  Level-3-220C-168 HR SN74SSTU32864EZKER SN74SSTU32864EZKER
SN74SSTU32864EZKER Green (RoHS & no Sb/Br)  SNAGCU  Level-3-260C-168 HR SN74SSTU32864EZKER SN74SSTU32864EZKER
SN74SSTU32864E 应用技术支持与电子电路设计开发资源下载
  1. SN74SSTU32864E 数据资料 dataSheet 下载.PDF
  2. TI 德州仪器特殊逻辑产品选型与价格 . xls
  3. Shelf-Life Evaluation of Lead-Free Component Finishes (PDF 1305 KB)
  4. Understanding and Interpreting Standard-Logic Data Sheets (PDF 857 KB)
  5. TI IBIS File Creation, Validation, and Distribution Processes (PDF 380 KB)
  6. Implications of Slow or Floating CMOS Inputs (PDF 101 KB)
  7. CMOS Power Consumption and CPD Calculation (PDF 89 KB)
  8. Designing With Logic (PDF 186 KB)
  9. Live Insertion (PDF 150 KB)
  10. Input and Output Characteristics of Digital Integrated Circuits (PDF 1708 KB)
  11. Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc (PDF 43 KB)
  12. HiRel Unitrode Power Management Brochure (PDF 206 KB)
  13. LOGIC Pocket Data Book (PDF 6001 KB)
  14. HiRel Unitrode Power Management Brochure (PDF 206 KB)
  15. Logic Cross-Reference (PDF 2938 KB)